Service Manual for Chery QQ6

(UMC EFI for 473F Engine)

After Sales Service Department of Chery Automobile Sales Co., Ltd.

CONTENTS

CHAPTER ONE DISASSEMBLY AND INSTALLATION OF ELECTRONIC FUEL INJECTION SYSTEM	4
I. Disassembly and Installation of Components of Electronic Fuel Injection System	4
CHAPTER TWO PRINCIPLE OF ELECTRONIC FUEL INJECTION SYSTEM	6
I. Overhaul of System Components	6
1. Intake Air Temperature Pressure Sensor	
2. Tachogenerator of Engine	
3. Phase Sensor	
4. Water Temperature Sensor	10
5. Knock Sensor	12
6. Electric Throttle Body	12
7. Oxygen Sensor	
8. Fuel Pump Assembly	16
9. Injector	
10. Ignition Coil	19
11. Spark Plug	21
12. Carbon Canister Solenoid Valve Control	22
13. Electronic Accelerator Pedal	24
14. Three-way Catalytic Converter	24
15. Fan Control	
16. Position Sensor of Double Brake Pedal	
17. Clutch Position Sensor	26
18. A/C Control	27
CHAPTER TWO FUNDAMENTAL PRINCIPLE FOR FAILURE DIAGNOSIS OF	
ELECTRONIC FUEL INJECTION SYSTEM	28
1. Failure Information Records	
2. Failure State	
3. Failure Types	
4. Failure Frequency Counter	
5. Limp Home	29
6. Failure Alert	29
7. Readout of Failure	29
8. Clearing Failure Information Records	
9. Failure Locating	
10. Failure Code Table	30
11. The Steps for Implementation of Failure Diagnosis According to Failure In	formation
Records	35
11.1 Electronic Throttle Failure	35
11.2 Knock Sensor failure	36
11.3 Air Pressure Sensor Failure	37

11.4 Front Oxygen Sensor Failure	38
11.5 Rear Oxygen Sensor Failure	40
11.6. Coolant Temperature Sensor Failure	42
11.7 Failure in Driver Stage of Injector	43
11.8 Failure in Driver Stage of Canister Control Valve	44
11.9 Failure in Driver Stage of Malfunction Indicator Lamp (MIL)	45
11.10 Failure in Driver Stage of 1#, 2# Coils of Step Motor	46
11.11 Craftshaft Position Sensor Failure	47
11.12 Craftshaft Position Sensor Failure	48
11.12 Ignition Coil Failure	49
11.13 Accelerator Pedal Position Sensor Failure	50
11.14 Double Brake Swtich	51
11.15 Theft-proof Control System Failure	52
12. Steps for Implementation of Failure Diagnosis by Engine Symptom	53
12.1 Perform Preliminary Inspection First before Following the Steps for Implement	tation
of Failure Diagnosis by Engine Symptom.	53
12.2 The Engine Does not Rotate or Rotates Slowly when Starting	55
12.3 When Starting, Engine Can be Dragged to Rotate but Can not Start with Success.	56
12.4 Warm Starting Difficulty	58
12.5 Engine Speed is Normal, but it is Difficult to Start at any Time	60
12.6 Cold Starting Difficulty	62
12.7 Unsteady Idle Speed at Any Time	64
12.8 Unsteady Idle Speed during Warming up Process	66
12.9. Unsteady Idle Speed after Warming up	67
12.10 Unsteady Idle Speed or Extinguish with Load (A/C etc.)	69
12.11 Periodic Unsteadiness (Have to Perform Self-study again after ECU is Power of	ff) 70
12.12 Too High Idle Speed (Have to Perform Self-study again after ECU is Power off)72
12.13. Engine Revolution Speed is too Low or Flameout	73
12.14 Slow Response when Accelerating	75
12.15 Poor Performance and Disability when Accelerating.	77
12.16 Unable to Reach the Maximum Revolution when Accelerating	79
12.17 When Releasing Accelerator Pedal after Acceleration, Unsteady Idle Speed O	ccurs
at Instant, even Extinguishes	81
12.18 A/C System Failure	83
13. Safety Precautions for System Maintenance	84
13.1 Safety Precautions for Diagnosis and Maintenance of Gasoline Injection Elect	ronic
Control System	84

Chapter One Disassembly and Installation of Electronic Fuel Injection System

I. Disassembly and Installation of Components of Electronic Fuel Injection System

1. Disassembly and installation of engine control unit (ECU).

2. Position and disassembly of intake air pressure sensor.

3. Position and disassembly of camshaft position sensor.

4. Remove fixing hoop of intake hose.

5. Remove the four fixing bolts of electronic throttle body.Pull out the connector and take out the electronic throttle body.

6. Use a screwdriver to press down the fixed clip of the injection nozzle connector and then pull out the connector.

7. Use a screwdriver to press down the fixed clip of the knock sensor connector and then pull out the connector.

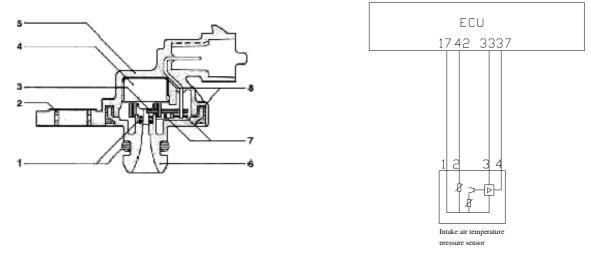
8. The water temperature sensor is behind the thermostat seat.

9. Pull out the connector of the ignition primary coil by hand.

10. Pull out the connector of the engine tachogenerator by hand.

Chapter Two Principle of Electronic Fuel Injection System

I. Overhaul of System Components


1. Intake Air Temperature Pressure Sensor

1.1 Function of the sensor:

Detect air intake pressure and temperature in air intake manifold, which will be provided to ECU as main load signal of engine; ECU will calculate injection pulse-width based on this signal.

1.2 Principle of the sensor:

Intake air temperature pressure sensor is a sensor that integrates an intake air pressure sensor and an intake air temperature sensor. Absolute pressure sensor element of intake manifold is composed of a silicon chip. A pressure diaphragm is etched on the silicon chip. On the pressure diaphragm, there are 4 piezo-resistances, which serve as strain sensors and constitute a Wheatstone bridge. In addition to this pressure diaphragm, a signal processing circuit is also integrated on the silicon chip. The silicon chip and a metal housing constitute a closed reference, where the absolute pressure of the gas inside approaches to zero. Thus, a micro-electronic mechanical system is formed. The active face of the silicon chip stands a pressure close to zero, while its back face stands the pending measuring intake manifold absolute pressure introduced by a connecting pipe. The thickness of the silicon chip is merely several μ m, so the absolute pressure change in intake manifold will bring mechanical deformation to the silicon chip. The 4 piezo-resistances will accordingly deform and their resistances also change. The voltage signal in linear relation to the pressure is formed after process by the signal processing circuit on the silicon chip. The intake temperature sensor element is a negative temperature coefficient (NTC) resistance, which will change with the intake temperature. This sensor sends out a voltage indicating the intake temperature change to the controller.

Cross-section view for sensor of air absolute pressure and temperature in intake manifold

1 Gasket 2 Stainless Steel Sleeve 3 PCB Board 4 Sensing Element 5 Housing 6 Pressure Bracket 7 Soldering 8 Bonded With Bonding Agent

1.3 Parameters of technical features

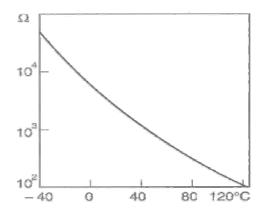
This sensor is designed to be mounted on the plane of auto engine intake manifold. The pressure connecting pipe together with the temperature sensor protrudes inside the intake manifold and an O gasket is used to enable atmosphere-proof.

If it is mounted on an auto through an appropriate method (picks up pressure from the intake manifold and the pressure connecting pipe tilts down etc.), it can be ensured that no condensed water will be formed on the pressure-sensitive element.

Drilling and fixing on the intake manifold must be carried out according to the supply drawing so as to ensure a long seal and a good tolerance to fretting by agent.

The reliable contact of electric connection of a joint will mainly be affected by the joints of components and parts, and it is also in relation to the material quality and dimensional precision of the joint fitted with it on the harness.

1.4 Failure effects and judgment method


- Failure effects: spark extinction and poor idling etc.
- General Failure Reason:
 - 1. Abnormal high voltage or inverse strong current occur during working;
 - 2. The vacuum element is damaged during maintenance.
- I Maintenance precautions: during maintenance, impinge using high pressure gas toward the vacuum element is prohibited; when replacing the sensor after a failure is found, remember to check if output voltage and current of the generator is normal.
- Simple measurement method:

1.4.1 Temperature sensor:

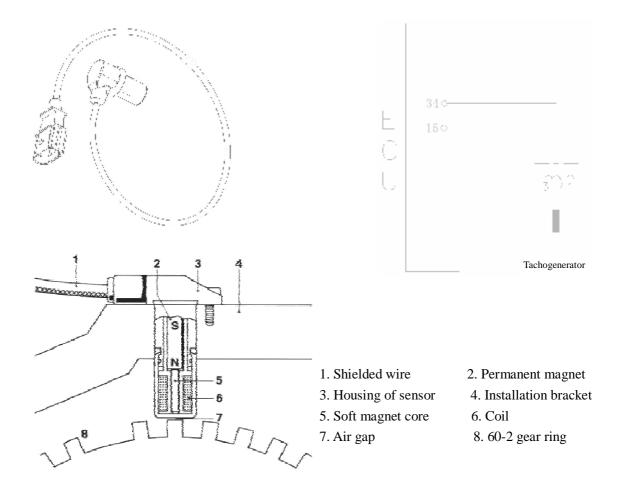
With the joint removed, turn the digital multimeter to Ohm shift, and then connect the two meter pens respectively to 1# and 2# pins of the sensor; At 20°C, the rated resistance should be 2.5 $k\Omega\pm5\%$, and the other corresponding resistances can be measured out from the characteristic curve in above chart. Analogue method can also be used when measuring, i.e., use an electric drier to blow the sensor (be careful not to be too close to the sensor), and then observe the change of the sensor resistance. At this point, the sensor resistance should fall.

1.4.2 Pressure sensor:

With the joint connected, turn the digital multimeter to DC Voltage shift, and then connect the black pen to ground while the red pen respectively to 3# and 4# pins. Under idle speed state, 3# pin should have a 5V reference voltage while the voltage on 4# pin should be around 1.3V (the actual value depends on the model); Under no load state, when opening the throttle slowly, the voltage on 4# pin may change little; when opening the throttle rapidly, the voltage on 4# pin may reach around 4V instantly (the actual value depends on the model) and then fall to around 1.5V (the actual value depends on the model).

2. Tachogenerator of Engine

2.1 Function of the sensor:

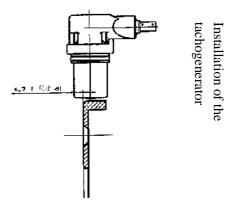

As one of the uppermost sensors of engine, the tachogenerator of engine provides ECU with rev signal, acceleration signal and crank angle signal etc. of engine. ECU will calculate injection pulse-width, injection time and ignition timing through these signals and provide the instruments with rev signal of engine.

2.2 Principle of the sensor:

The inductive tachogenerator work together with pulse disc, it is used in ignition system without distributor providing engine speed and crank shaft top dead center information.

Inductive tachogenerator is made up of a permanent magnet and coil outside of magnet.

Pulse disc is a tooth disc with 60 teeth originally but there are two teeth opening. Pulse disc is assembled on crank shaft and rotate with crankshaft. When the tooth tip passes through closely the end of the inductive engine tachogenerator, the pulse disc made of the ferromagnetic material will cut the line of magnetic force of the permanent magnet in the inductive engine tachogenerator to generate inductive voltage in the coil as engine speed signal output.


2.3 Parameters of technical features

Item		Value		
	Min.	Typical	Max.	
Resistance under a room temperature of	774	860	946	Ω
20°C				
Inductance	310	370	430	mH
Output voltage at a crankshaft	>1650			mV
revolution of 416rpm				

2.4 Installation attentions:

- For the inductive tachogenerator, it is permitted to take out from its pack before it is assembled to the auto or testing device right away.
- I Inductive tachogenerator is assembled by press in method but not hammer tapping.
- Partly micro-encapsulated bolt M6×12 for fixing of the inductive engine tachogenerator is recommended.
- I The tightening torque is 8±2Nm.
- Gas clearance between inductive tachogenerator and pulse disc tip is **0.8-1.2mm**.

Dimension d (see the figure below): 4.7mm.

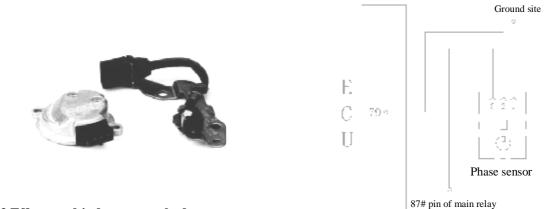
2.5 Failure effects and judgment method:

- Failure effects: start failure etc.
- I General cause of the failure: man induced failure.
- I Maintenance precautions: during maintenance, the tachogenerator should be installed by using press-in method instead of hammering method.
- **I** Simple measurement method:

1. With the joint removed, turn the digital multimeter to Ohm shift, and then connect the two meter pens respectively to 2# and 3# pins; At 20°C, the rated resistance should be $860\Omega\pm10\%$.

2. With the joint connected, turn the digital multimeter to AC Voltage shift, and then connect the two meter pens respectively to 2# and 3# pins of the sensor; start the engine and voltage output should be present at this point. (Inspection with vehicle oscilloscope is recommended).

Oscillogram in Test


3. Phase Sensor

3.1 Function of the sensor:

Provide ECU with phase signal, i.e. help crankshaft position sensor of engine to judge it is then at compressing top dead center or air exhaust top dead center.

3.2 Principle of the sensor:

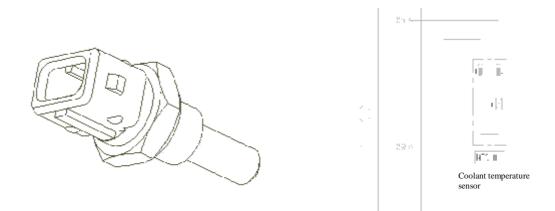
The phase sensor is consisted of the Hall generator installed on the valve cover and the signal wheel machined on the intake camshaft. When the camshaft rotates, the signal wheel will make the magnetic flux passing the Hall generator change, thus generating a variable Hall signal.

3.3 Effects and judgment method:

Failure effects: over proof emission and fuel consumption rise etc.

- General cause of the failure: man induced failure.
- Simple measurement method:

(connect the joint) switch on ignition switch but do not start the engine; put digital multimeter on DC volt shift, connect two meter pen to No. 1 and No. 3 sensor connectors and make sure there is 12V reference voltage. Start the engine, check if it is in good conditions of No.2 pin by oscillograph on vehicle.


4. Water Temperature Sensor

4.1 Function of the sensor:

The water temperature sensor simultaneously provides ECU and instruments with water temperature signal. ECU will calculate and regulate injection pulse-width and ignition advance angle through water temperature signal. In addition, through water temperature signal, ECU also can control turn-on and turn-off of cooling fan to prevent engine from damage caused by overheat.

4.2 Principle of the sensor:

The water temperature sensor is a minus temperature coefficient type electric resistance model sensor; the higher the temperature is, the less the resistance will be. But, temperature rise and resistance fall are not in linear relation.

4.3 Parameters of technical features

(1) Data limit

Item	Value	Unit
Rated voltage	Can only be run by ECU	
Rated resistance at 20°C	2.5±5%	kΩ
Range of running temperature	-30 to +130	°C
Max. measuring current passing the	1	mA
sensor		
Permissible vibration acceleration	600	m/s ²

4.4 Installation attentions

Coolant temperature sensor is installed on the cylinder body and the copper heat conducted socket is inserted into coolant. There are thread on the socket, and screw in coolant temperature sensor onto the threaded hole on cylinder block by the hexagon head of the socket. The maximum permissible tightening torque is 15Nm.

4.5 Failure effects and judgment method

- Failure effects: starting difficulties etc.
- I General cause of the failure: man induced failure.
- Simple measurement method:

With the joint removed, turn the digital multimeter to Ohm shift, and then connect the two meter pens respectively to 1# and 2# pins of the sensor; At 20°C, the rated resistance should be $2.5k\Omega\pm5\%$ and the others can be measured out from the characteristic curve in above chart. Analogue method can also be used when measuring, i.e., dip the working area of the sensor in boiled water (dip for adequate time), observe the resistance change of the sensor, at this point, the resistance should fall to 300Ω - 400Ω (the actual value depends on the temperature of the boiled water).

5. Knock Sensor

5.1 Function of the sensor:

The knock sensor provides ECU with knock signal. When the engine generates knock, ECU will control to gradually reduce ignition advance angle to eliminate the knock; when no knock occurs during certain strokes, ECU will gradually increase ignition advance angle to enable the engine to obtain max. torque.

5.2 Principle of the sensor:

Knock sensor is a kind of vibrating acceleration sensor and is assembled on cylinder block. Either single or multiple can be installed. The sense organ of the sensor is a piezoelectric element. The vibration of cylinder block is transferred to piezoelectric crystal by mass block inside of sensor. The piezoelectricity crystalloid gets pressure from mass block vibration, producing voltage on two polar and transferring vibration signals to voltage signal and output it. See the following frequency response characteristic curve. Because the frequency of knock vibration signal is much higher than the normal engine vibration signal, the ECU can separate the signal into knock signal and non-knock signal.

5.3 Attentions

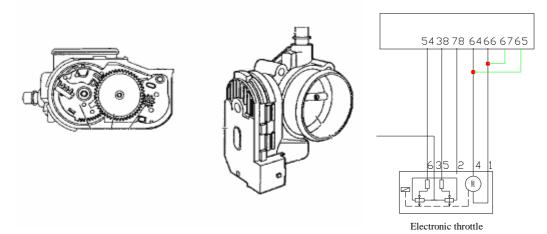
Knock sensor has a hole in the middle, through which it is fastened on the cylinder by a M8 bolt. For the aluminum alloy block, using long bolt with 30 mm; for the casting iron, using 25mm bolt. The tightening torque is 20±5Nm. The installation position should ensure that the sensor is liable to receive vibration signals from all cylinders. Decide the optimal installation position of knock sensor through modal analysis to the engine body. Generally, for a 4-cylinder engine, the knock sensor is installed between 2# cylinder and 3# cylinder; for a 3-cylinder engine, it is installed at the center of 2# cylinder. Do not let liquid such as engine oil, coolant, brake fluid and water etc. contact the sensor long. Use of gasket of any type is not allowed in installation. The sensor must cling to the cylinder tightly through its metal surface. During wiring of sensor signal cables, do not make the signal cables resonate; otherwise, they may break. Be sure to prevent turning on of high voltage between 1# and 2# pins of the sensor; otherwise, damage to the piezoelectric element may occur.

5.4 Effects and judgment method

Failure effects: poor acceleration etc.

- Reasons for general failures: long time contact of liquid such as engine oil, coolant, brake fluid and water etc. with the sensor, which may corrode the sensor.
- I Maintenance precautions: (see installation attentions)
- I Simple measurement method: (remove the joint) put digital multimeter at ohm shift, and contact the No. 1, No. 2 and No. 3 pin with its two meter pens. The resistance value should be more than $1M\Omega_{,}$ under normal temperature. Leave the digital multimeter at millivolt shift, and tap around the sensor using little hammer, there should be voltage signal output.

6. Electric Throttle Body


6.1 Function:

The electronic throttle body can automatically open or close the throttle according to the driver's will to apply the accelerator pedal to let the engine work under the corresponding operating mode. The electronic throttle has cancelled the conventional throttle guy and the opening of throttle is controlled by ECU based on the signal from accelerator pedal and other signals (such as A/C, power assisted steering, back and gearshift etc.) through an electronic step motor inside the electronic throttle body. In addition to cancel of conventional idle speed by-pass and idle speed step motor, there are also throttle position sensors on the electronic throttle body to feed back the opening of the throttle. This suite of throttle position sensor is different from the common one; totally two suites of throttle position sensors are installed inside the electronic throttle body to monitor rationality of the signals from the latter; when any problem occurs in a certain signal, ECU can still use the other suite of signals to work on.

6.2 Working principle:

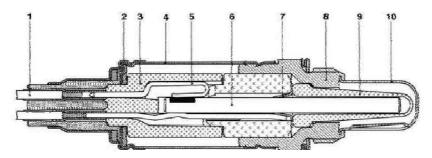
The throttle driving motor is a micro motor, which is composed of multi steel stators in a circle and a rotor, with one coil on each steel stator. The rotor is a permanent magnet with a nut at its center. All stators coils are constantly power on. As long as the direction of current of one coil is changed, the rotor will turn a certain angle. When the directions of current of all stator coils is changed in a proper order, a rotating magnetic field is formed, which will drive the rotor made from permanent magnet rotate along a certain direction. Its principle is just that of a micro direct current motor.

This motor drives a suite of special gear reducing mechanism and a bidirectional spring; when the system is under power off condition, this mechanism can ensure that the opening of throttle valve plate maintains at a safe position where is bigger than that for idle speed but not too high, so that the vehicle can continue to run; if engine ECU has entered this failure mode, when applying the accelerator pedal, the valve plate of the electronic throttle body will no longer act.

6.3 Failure diagnosis:

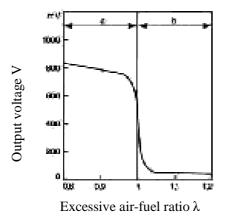
ECU can monitor short-circuit and break of coil of the throttle driving motor, and light the engine failure light in case of such failure to let the engine enter failure mode, when the engine fails to accelerate, has very poor driving performance and needs maintenance immediately.

7. Oxygen Sensor


7.1 Function of the sensor:

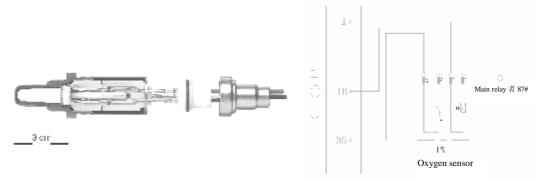
Oxygen sensor is one of the principal sensors on modern autos; it can feed back the mixture strength by detecting oxygen content in exhaust gas. ECU will correct the mixed gas based on the

signals fed back by the oxygen sensor, i.e. control injection pulse-width to let the mixed gas always maintain an approximately ideal air-fuel ratio (14.7:1).


7.2 Principle of the sensor:

Sensing element of oxygen sensor is a kind of ceramic tube with holes, and outside of tube walls are surrounded by engine exhaust gas and inside is air. Ceramic sensor element is a kind of solid state electrolyte with electrical heating tube inside (as shown in the figure).

Cross-section view of oxygen sensor


Cable 2. Dish washer 3. Insulation bush 4. Protective bush
Clamp fitting of heating element 6. Heating rod 7. Contact pad
Sensor seat 9. Ceramic probe 10. Protection sleeve

Characteristic Curve of oxygen sensor at 600°C

The operation of the oxygen sensor is achieved by converting the concentration difference of oxygen ion between inside and outside of the ceramic sensor element to the voltage signal output. It bears the characteristic of solid electrolyte once the temperature of the ceramic sensor element reaches 350°C. Because of the particularity of its materials, the oxygen ion can pass the ceramic sensor element freely. Taking advantage of this characteristic, the concentration difference will be converted to electric potential difference to form electric signal output. If the mixed gas is comparatively thick, the oxygen ion thickness difference between inside and outside of the ceramic tube will be higher and the potential difference will also be higher, then a mass of oxygen ion will move from inside to outside, so, the output voltage is comparatively high (close to 800mV-1000mV); If the mixed gas is comparatively thin, the oxygen ion thickness difference will also be smaller, then just a few of oxygen ion will move from inside to outside, so, the outside, so, the output voltage is comparatively low

(close to 100mV). The signal voltage will mutate near theoretical equivalent air-fuel ratio (λ =1), see the figure above.

Every oxygen sensor bears a cable and the other end of the cable is the wire connector. The wire connector of oxygen sensor produced by our company has four pins:

No.1 connects to the positive pole of heater power supply (white);

No.2 connects to the negative pole of heater power supply (white);

No.3 connects to signal negative pole (gray);

No.4 connects to signal positive (black).

7.3 Parameters of technical features

- I The requirement to exhaust pipe: the segment of exhaust pipe in the area before the oxygen sensor must be heated up rapidly. If possible, the exhaust pipe should be designed to be tilting down to avoid accumulation of condensed water in front of the oxygen sensor.
- I Do not inappropriately heat up the metal snap ring of the cable at oxygen sensor side, especially after the engine is shut down.
- Do not apply purge fluid, oiliness fluid or volatile solid on connector of the oxygen sensor.
- I The screw thread of the oxygen sensor is $M18 \times 1.5$.
- The size of the hexagonal head wrench for the oxygen sensor is 22-0.33.

The tightening torque for the oxygen sensor is 40-60Nm.

7.4 Failure effects and judgment method

- Failure effects: poor idling, poor acceleration, over proof tail gas and excessive fuel consumption etc.
- **I** General causes of the failure:

1. Moisture entering inside of sensor, and when the temperature is changed, the pin will be broken;

2. The oxygen sensor "intoxicates". (Pb, S, Br, Si)

Maintenance precautions: application of cleaning fluid, oiliness fluid or volatile solid on the oxygen sensor during maintenance is prohibited.

Simple measurement method:

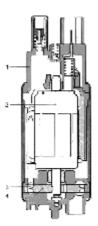
1. Remove joint, put digital multimeter to ohm shift, connect meter pen to No.1 (white) and No.2 (white) pins of the sensor. The resistance value is $1\sim 6\Omega$ at constant temperature.

2. With the joint connected, under idle speed state, when the working temperature of the oxygen sensor reaches 350° C, turn the digital multimeter to DC Voltage shift and connect the two meter pens respectively to 3# (gray) and 4# (black) pins; at this point, the voltage should fluctuate rapidly between 0.1-0.9V.

8. Fuel Pump Assembly

8.1 Function of fuel pump:

Fuel pump is used to deliver the fuel in the fuel tank to inside the engine at a certain pressure for combustion. It also needs to regulate the fuel pressure duly as required by system pressure (non fuel return type). Generally, the system fuel pressure provided by fuel pump is around 3.5-4bar.


8.2 Operating principle of fuel pump:

The electrical fuel pump is comprised of the DC motor, vane pump and end cover (integrates check valve, relief valve and anti-electromagnetic interference element) as shown in following figure.

The pump and the motor are installed on the same shaft within same closed housing. The pump and electromotor are full of gasoline for coolant and greasing inside of the casing. The accumulator provide power to electric fuel pump via fuel pump relay, and the relay switches on electric fuel pump only when engine starting and running. When the engine stops for some reason, the pump will stop to run by itself.

The max pressure at the outlet of the electrical fuel pump shall be between 450 and 650 kPa, depending on the relief valve. Because the system is a non fuel return system, the pressure of the whole fuel system will be controlled by the fuel pressure regulator. The value is 400KPa in general.

The electric fuel pump has different flow to the engine's request. In order to facilitate the production, the electromotor revolutions of EKP13 series electric fuel pumps of the same structure are adjusted by changing the coil's number of turns, and thus the flow is adjusted. Therefore, do not apply an electric fuel pump for one model to another at will.

- 1. End cover of oil pump
- 2. Electromotor
- 3. Oil passage
- 4. Paddle pump

Cross-section view of electric fuel pump

8.3 Parameters of technical features

Under certain fuel supply pressure, the flow of the electric fuel pump is in direct proportion to voltage. The fuel pumps used by complete vehicle manufacturers are different.

8.4 Installation attentions

EKP13 series electric fuel pump can only be used inside fuel tank. When installing the fuel pump, the filter net at fuel inlet with mesh size not bigger than 60μ or arranged with the customer must be installed. Be careful not to let the fuel jet from air vent spray on the filter net at fuel inlet, fuel pump bracket or fuel tank wall. Be careful when carrying the fuel pump. First, be sure to protect the filter net at fuel inlet from load and impact. The fuel pump should be taken out of the plastic

wrapping material with care only when installing. The viser can be taken off only when the fuel pump is to be installed. Takeoff of the filter net at fuel inlet is absolutely not allowed. The foreign material that enters the fuel inlet of the fuel pump or the filter net may lead to damage of the fuel pump.

8.5 Failure effects and judgment method

- Failure effect: strong running noise, poor acceleration, failure to start (starting difficulties) etc.
 - Reasons for general failures: use of inferior fuel leads to:
 - 1. Accumulated colloid became insulation layer;
 - 2. Fuel pump bushing and armature blocked;
 - 3. Components of fuel level sensor eroded.
- I Maintenance precautions:

I

1. The electric fuel pump has different flow according to the requirement of engine. The pump with same shape and possible to assemble perhaps is not available. For service, the part number of replaced fuel pump must be in conformity with the original ones;

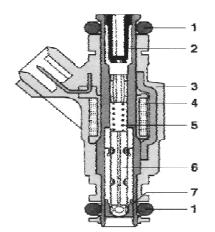
2. Do not run the pump at dry status to prevent the pump from accident;

3. Please pay attention to take cleaning measures for fuel tank and pipeline and replace fuel filter in case replace fuel pump.

Simple measurement method:

1. With the joint removed, swift the digital multimeter on ohm shift, connect the two meter pens to two pins of pump respectively to measure the inner resistance, it is indicated that is not at zero or infinite (that is non short circuit, open circuit status).

2. With the joint connected, connect the fuel pressure gauge onto the sucker, start the engine and then observe if the fuel pump works; if the fuel pump does not run, check if mains voltage is present at "+" pin; if the fuel pump works, under idling mode, check if the fuel pressure is about 400kPa.


9. Injector

9.1 Function of injector:

ECU controls the coil of the injector through pulse to make the injector open or close, so that, appropriate fuel will be injected into air intake pipe in due time to mix with air.


9.2 Working principle:

ECU sends electrical impulse to injector coil to form magnetic field force. When magnetic field force increase to resultant force that enough to conquer return spring pressure, needle valve gravity and friction force, the needle valve begin to rise up and start the injection process. The pressure of return spring makes needle valve close again when the injection impulse is stopped.

- 1. O-ring
- 2. Filter net
- 3. Injector body with electric connector
- 4. Coil
- 5. Spring
- 6. Valve needle with coil armature
- 7. Valve seat with nozzle plate

Cross-section view of electromagnetic injector

Circuit diagram of electromagnetic injector

Item		Value		
	Min.	Typical	Max.	
Operating pressure (pressure		350		KPa
difference)				
Injector electric resistance at 20°C	11		16	Ω

Allowable fuel:

The injector can only use the fuel in compliance with the provisions in GB 17930-1999 (for vehicle unleaded gasoline) and GWKB 1-1999 (harmful substance control standard for vehicle gasoline), and detergent is required to be added into gasoline. It should be specially pointed out that too long storage of gasoline may make it deteriorate. Especially, the taxi with a (LPG and gasoline) dual-fuel engine uses LPG as fuel long and gasoline is only used for startup, so, daily consumption of gasoline is little. However, because the fuel pump runs long, so the temperature of fuel tank is quite high. If gasoline is stored in the fuel tank of such auto, it may quite liable to oxidation and deterioration, which may lead to choke even damage of injector.

9.4 Installation attentions

- **I** Use specific connector for certain injector and no mixed use will be allowable.
- I For installation convenience, it is recommended to daub silica-free clean engine oil on the

surface of the O-ring at the upside of the injector where it connects with the fuel distributing pipe. Be careful not to let engine oil contaminate inside of the injector and the nozzle.

I Place the injector in its bracket vertically along injector bracket, then fix it to the bracket with retaining clips. Note:

(1) By location mode, the remaining clips for injector fall into axial location remaining clip and axial and radial location remaining clip; misuse should be avoided.

⁽²⁾ For installation of an axially located injector, make sure that the bayonet at middle of the remaining clip is completely locked into the groove of the injector and the grooves at both sides of the remaining clip are completely locked into the outskirt flanging of the injector seat.

③ When installing an injector that both axial and radial locations are required, use an axial and radial location remaining clip and place the locating piece of the injector and the locating pin of the injector seat respectively into the corresponding grooves on the location remaining clip.

④ If the injector has two grooves, be careful not to place by mistake, refer to the installation site of the original.

- I Installation of injector should be done by hand and knocking the injector with such tools as hammer etc. is prohibited.
- **I** When disassemble/reassemble the fuel injector, the O ring must be replaced. And pay attention to not damage the sealing surface of the injector.
- I Do not pull the support gasket of O-ring out of the injector. When installing, avoid damage to fuel inlet end, support ring, nozzle plate and electric connector of the injector. If damaged, use is prohibited.
- I After installation of injector, perform leakproofness detection for fuel distributing pipe assembly. It is acceptable only when no leakage exists.
- I The failure part must be disassembled by hand. Remove remaining clip of the injector first, and then pull out the injector from the injector seat. After disassembly, ensure cleanliness of the injector seat and avoid contamination.

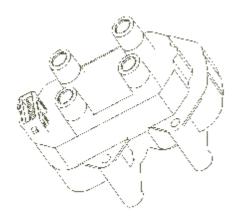
9.5 Failure effects and judgment method

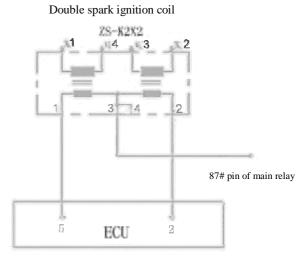
- Failure effects: Poor idling, poor acceleration, failure to start (starting difficulties) etc.
- **I** Reasons for general failures: failure caused by colloid accumulation inside the injector due to lack of maintenance.
- I Maintenance precautions: (see installation attentions)
- Simple measure method:

(remove the joint) swift the digital multimeter on ohm shift, connect the meter pens to the two pins of injector. The rated resistance should be $11 - 16\Omega$, when it is 20° C.

Suggestion: regularly wash and analyze the injector using a special washer analyzer for injector.

10. Ignition Coil


10.1 Function of ignition coil:


Primary and secondary circuits are integrated inside the ignition coil; when ECU controls on-off of current in the primary coil, a high voltage as high as thousands volts will be generated in the secondary coil, which will then generate spark through ignition cable and spark plug to ignite the mixed air in the cylinder.

10.2 Working principle

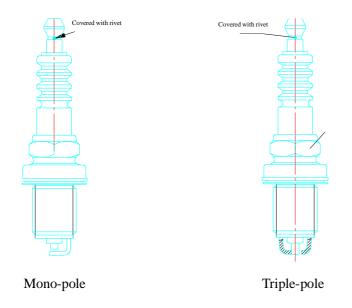
Ignition coil ZS - K2×2 consists of two primary windings, two secondary windings, mandrel, and

casing. When one of the primary windings grounding channel is connected, the primary winding is in charging. Once the primary winding circuit is cut off by ECU, the charging will be stopped. At the same time, the high voltage is sensed in the secondary winding and making the spark plug discharging. There is a different with the distributor ignition coil: for the ignition coil ZS - K2×2, there is one spark plug on both side of the secondary winding, so the both spark plugs can ignite at the same time. These two primary windings power on/off alternatively, correspondently, these two secondary windings discharge alternatively.

Ite		Value		Unit	
		Min.	Typical	Max.	
Nomina	l voltage		14		V
Resistance	Primary winding	0.42	0.5	0.58	Ω
(20 to 25℃)	Secondary	11.2	13.0	14.8	kΩ
	winding				
Inductance	Primary winding	3.4	4.1	4.8	mH
(20 to 25℃)	Secondary	26.5	32.0	37.5	Н
	winding				
Voltage produced	50pF load	30			kV
	$50 pF//1M\Omega$ load	23			kV

10.3 Technical characteristic

10.4 Failure effects and judgment method


- Failure effects: start failure etc.
- Reasons for the failures: burn out due to too strong current, damage by external force etc.
- I Maintenance precautions: use of "test ignition by short circuit" to test the ignition function is prohibited during maintenance to avoid damage to the electronic controller.
- Simple measurement method:

With the joint removed, turn the digital multimeter to Ohm shift, and then connect the two meter pens respectively to the two pins of primary winding. At 20°C, the resistance should be 0.42-0.58 Ω , while this value of secondary winding should be 11.2-14.8k Ω .

11. Spark Plug

The operating conditions of spark plug is extremely inclement, it is exposed to high pressure, high temperature and impact as well as strong corrosion from combustion product; therefore, it is a wearing part.

11.1 Outline drawing

11.2 Thermal performance

The spark plug must maintain a proper temperature to keep good working order. Practically, when insulator skirt of the spark plug maintains a temperature of 500-700°C, the oil drop that falls on the insulator can be burnt away immediately without carbon deposit formed. This temperature is called "self cleaning temperature of spark plug". With a temperature below this scope, the spark plug is liable to carbon deposit and electric leakage, thus causing ignition failure; with a temperature above this scope, when the mixed air is contacting with the red-hot insulator, pre-ignition may occur to produce knock, even it may burn in intake stroke and cause backfire.

11.3 Potential failures due to fall of ignition performance of spark plug

Starting difficulties, unsteady speed, chatter of engine, black smoke out of exhaust pipe, high fuel consumption and poor power.

11.4 Judge if the vehicle status matches with the spark plug type through color of spark plug

Yellow, brown yellow normal indicates that the combustion status of mixed air is normal Black with carbon deposit carbon deposit check if the spark plug type matches and then replace with the spark plug with lower heat value (slow heat radiation).

Black with blot soot clean if the injector nozzle is dirty

Dilute if the mixture ratio of oil gas is too big.

Check ignition coil etc. if the high voltage is poor.

Black with oil stain combustion of engine oil check sealing status of the seal ring and if

scratch is present on the cylinder wall.

Pearl overheating check if the spark plug type matches, and then replace with the spark plug with lower heat value (rapid heat radiation).

11.6 Regular replacement and use overdue

The spark plug is the low-value consumption goods. Though cheaper compared with other matching parts, its ignition performance directly affects the performance of the engine. Therefore, it needs regular replacement. For the spark plug used in our vehicles, we suggest that you should replace the spark plug at the following mileages: 10,000-15,000 km (single electrode); 15,000-25,000 km (multi electrode).

Ignition performance fall of spark plug will make fuel consumption rise and power drop off. The economic loss caused by excessive fuel consumption unconsciously will even afford to hundreds of new spark plugs. Use overdue makes the working condition of the engine poor in long term and brings some damage to the engine.

11.7 Inspection and maintenance of the spark plug

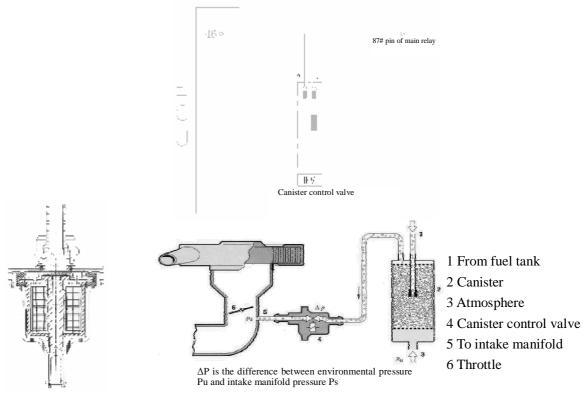
The inspection items for spark plug mainly include carbon deposit, electrode burn through, gap, and sealing and spark jump performances of the spark plug etc.

The electrode gap of the spark plug should be 0.7-0.9mm. Too small electrode gap will reduce the breakdown voltage and weaken the spark intensity; while too big electrode gap will increase the voltage required by the spark plug and cause spark out, especially when the ignition coil is aging and the ignition system is in poor maintenance, spark out is more liable to occur.

Common failures of spark plug: fall in sealing performance, air leak and soot at the air leakage position. The above failures can be inspected and judged through sealing performance test and spark jump test. Both sealing performance test and spark jump test can be conducted on a spark plug cleaning tester.

It is unscientific that some drivers and maintenance professionals remove the spark plug from the engine, place it on the cylinder head and inspect if it is in sound conditions using high voltage of the vehicle. In this test, the spark plug electrode is under an atmosphere other than a gas pressure of over 800KPa, its working pressure. Therefore, spark jump of a spark plug under an atmosphere does not indicate that it will also reliably produce spark jump under a high pressure conditions in the cylinder.

It is required that carbon deposit disposal and proper adjustment of spark plug gap should be done after a mileage of 10,000-15,000 km in its lifetime. When the temperature in cylinder rises, the electrode gap should be increased properly. That is, increase the electrode gap in summer while reduce it in winter. If the mixed air is strong, the electrode gap should be increased; otherwise, decreased. In plain region, the electrode gap should be decreased while in plateau region, increased.


12. Carbon Canister Solenoid Valve Control

12.1 Function:

Carbon canister solenoid valve is a device used to enable the fuel steam in fuel tank to enter cylinder to combust through control of ECU. Through controlling duty cycle of a solenoid valve, ECU can accomplish open and close of the solenoid valve.

12.2 Working principle:

The canister control valve is composed of solenoid, armature iron and valve etc. There is a filter net at the inlet. The airflow through the canister control valve at one hand depends on the duty cycle of the electric pulse output of canister control valve by ECU, and at another hand depends on the pressure difference between the inlet and the outlet of the canister control valve. The canister control valve will be closed when there is not any electric pulse.

Cross-section view of canister control valve

Installation drawing of canister control valve

12.4 Installation attentions

See above installation drawing for connection among canister control valve, carbon canister and intake manifold.

- I In order to avoid transfer of solid borne noise, floating installation of the canister control valve on the hose is recommended.
- I During installation, make sure that the airflow direction meets the specification.
- I Appropriate measures such as filtering and purge etc. must be taken to prevent such foreign material as particles from entry into the canister control valve from carbon canister or hose.

It is recommended that a corresponding protective strainer (size of grid<50 μ m) should be installed on outlet of carbon canister.

12.5. Failure effects and judgment method

Failure effects: Failure of functions etc.

Reasons for general failure: corrosion or poor sealing performance etc. due to entry of foreign material into inside of the valve.

- I Maintenance precautions:
 - 1. During installation, make sure that the airflow direction meets the specification;

2. In case of control valve failure due to black particle inside the valve body, when replacement of the control valve is required, check the status of the canister;

3. During maintenance, try to avoid entry of such liquid as water and oil etc. into the valve;

4. In order to avoid transfer of solid borne noise, floating installation of the canister control valve on the hose is recommended.

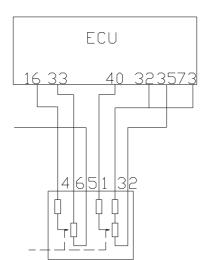
I Simple measurement method:

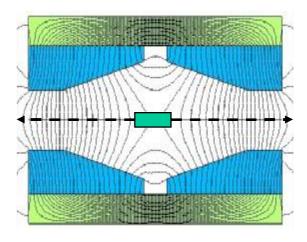
With the joint removed, turn the digital multimeter to Ohm shift, and then connect the two meter pens respectively to both pins of the canister control valve. The rated resistance at 20°C should read $26\pm4\Omega$.

13. Electronic Accelerator Pedal

13.1 Function:

The electronic accelerator pedal has cancelled the conventional throttle guy and the position of accelerator pedal is fed back to ECU by means of electronic signal, through which ECU can calculate and control the action of the electronic accelerator pedal. Two sets of Hall sensors are integrated in the pedal; ECU can compare and analyze the two signals, if one signal is improper, ECU will duly access the other signal and light the failure indicator.


13.2 Working principle:


The pedal is a Hall sensor. The fixed Hall generator and signal processing circuit are installed on fixed mounting of the pedal. The two permanent magnets with different magnetic sheet thickness act together with the pedal. When the pedal acts, the magnetic flux passing the Hall generator will also change accordingly, the signal processing circuit will process these signals and then send them to ECU.

13.3 Detection:

The relationship between the two signals of the accelerator pedal is that signal 1 is equal to signal voltage.

At idle speed position, the voltage of signal 1 is 4.59 and that of signal 2 is 4.30. When the pedal is at middle position, the voltage will be the minimum; when the pedal is at either end position, the voltage will be the maximum.

14. Three-way Catalytic Converter

14.1 Function:

Three-way catalytic converter is used to convert the noxious gas in tail gas into such innocuous

gases as carbon dioxide and water etc. At 300-800°C, the conversion efficiency of three-way catalytic converter is maximum; with a temperature below this scope, the conversion efficiency will be very poor, while, with a temperature above this scope, the three-way catalytic converter may be burnt out. Three-way catalytic converter can exert better conversion efficiency only when the oxygen sensor works. In control strategies of ECU, there are several protective modes for three-way catalytic converter, and ECU can protect the three-way catalytic converter by regulating air-fuel ratio and ignition advance angle.

15. Fan Control

15.1 Function:

In order to abstract heat from engine system and from condenser with A/C turned on, fan control is affected by the signal to ECU sent by water temperature sensor; When water temperature is high (above the threshold value set by ECU), the fan will run, and when water temperature is low (below the threshold value set by ECU), the fan will also run; with A/C turned on, the fan will run at low speed.

15.2 Composition:

DC electric motor double fan (high and low speed change).

15.3 Installation requirements:

The fan is installed between the rear of radiator and the engine, be careful when installing: not to damage fin of fan blade, otherwise, running noise of the fan will increase, if serious, it may lead to sharp fall of heat radiation effect of the engine.

15.4 Failure diagnosis:

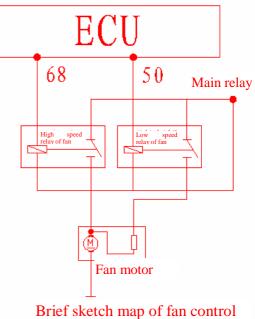
Fan control circuit is a short or open circuit to ground;

The fan has failure itself;

Too loud fan noise;

Failure in power supply circuit of fan.

15.5 Troubleshooting:


First, validate whether it is a high speed fan system problem or a low speed fan system problem. Provided that this is a fan control system problem, use a diagnostic tester to locate the failure point, and then validate whether it is a short-circuit or a break in control circuit.

Failure symptom: the fan failure may result in rise of engine coolant temperature and poor refrigeration of A/C system.

15.6. Fan Control:

Turn-on of low gear of fan:

- 1. Temperature of engine coolant: 96°C-102°C;
- 2. On request for A/C, the fan will start up;
- 3. When driving speed is too high, the fan will start up;
- High speed startup of fan:
- 1. Engine coolant temperature sensor failure;
- 2. Air flow meter failure;
- 3. Engine coolant temperature exceeds 102℃. Pins:

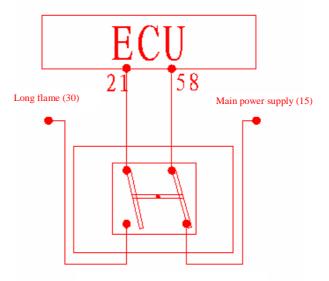
- 1. High speed fan control (corresponds to ECU50#);
- 2. Low speed fan control (corresponds to ECU68#);

The operating mode of fan after engine stops:

- 1. Failure of intake air temperature sensor of engine, delay 60s;
- 2. Failure of intake air temperature sensor of engine, delay 60s;
- 3. Engine coolant temperature exceeds 100.5°C, delay 60s;
- 4. Engine coolant temperature exceeds 70.5 $^\circ\!\mathrm{C}$, delay 60s.

16. Position Sensor of Double Brake Pedal

16.1 Function:


制动开关传感器是将刹车信号送给 ECU,ECU 根据(原文不全)

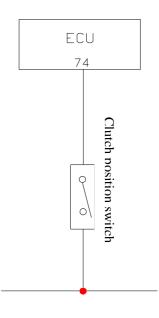
16.2 Working principle:

Inside the brake switch, there are two mutually independent switches with one normal close and the other normal open. After applying the accelerator pedal, the former normal close switch turns to be normal open, while the normal open one turns to be normal close. Both signals will be sent to ECU to be used to control other systems. Whenever the two signals disaccord, ECU will enter failure mode, the electronic throttle will not respond when applying the accelerator pedal and the engine will maintain idle speed working state.

Composition: the double brake switch is installed on the bracket of the brake pedal and contains two independent switches inside.

Installation requirement: the assembly is installed on the pedal and there is a thread adjusting mechanism on the switch for stroke adjustment of the switch and effective stroke adjustment of the brake switch.

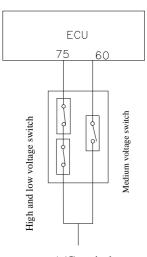
Double brake switch


17. Clutch Position Sensor

17.1 Function:

Clutch position switch provides ECU with the signal of clutch position, but this signal can only be used to distinguish between disengaging and engaging positions of the clutch.

17.2 Working principle:


ECU provides clutch position switch with a 12V power supply; when the clutch is under disengaging state, the power supply will ground and ECU will lose 12V high potential signal, by which the position of the clutch can be judged.

18. A/C Control

By receiving the A/C signal from A/C switch, ECU can control working of A/C compressor. ECU also can receive the signals from high and low pressure switches of A/C to ensure safety of A/C system. When A/C signal is sent to ECU through high and low pressure switches, if the low pressure switch breaks, ECU will not receive the A/C signal; the compressor is thus unable to work. If A/C system has a too high pressure, the high pressure switch will break and A/C signal can not be provided to ECU; so, ECU will immediately cut off the compressor. When system pressure is normal or a little higher (medium pressure), the medium pressure switch will cut in; thus, ECU can control the fan to run immediately at high speed to ensure a system pressure within the normal range.

Cut off pressure of the low pressure switch: 0.12Mpa Cut-in pressure of the medium voltage switch: 1.6Mpa Cut off pressure of the high pressure switch: 3.2Mpa Through evaporator temperature sensor of the A/C system, ECU can also protect the A/C system and prevent evaporator case from freezing. When the temperature provided by the evaporator temperature sensor is blow 3.75°C, ECU will cut off the compressor; when the temperature is above this degree, ECU will automatically engage the compressor to let it work.

A/C switch

Chapter Two Fundamental Principle for Failure Diagnosis of Electronic Fuel Injection System

1. Failure Information Records

The ECU monitors sensor, actuator, related circuit, malfunction indicator and battery voltage etc., and even EUC itself continuously. At the same time, the ECU inspect the reliability test on sensor signal output, actuator driving signal and internal signal (e.g.: closed loop control, knock control, idle speed control and accumulator voltage control etc.). ECU will set the malfunction record on RAM malfunction memory immediately once the malfunction or the unlikelihood signal is detected. The failure information records are stored in the form of diagnostic trouble code (DTC) and are displayed in the precedence order of occurrence of the failures.

Failures can be divided into "stable state failures" and "random failures" (for example, caused by transient open circuit of wires or poor contact of inserted parts) by failure frequency.

2. Failure State

Once duration of occurrence of an identified failure exceeds the given stabilization time for the first time, ECU will account it as a stable failure and then store it as a "stable state failure". If this failure disappears, it will be stored as a "random failure" and "non-existent". If this failure is identified again, it will still be a "random failure", but a "existent" early failure that will not affect average service of the engine.

3. Failure Types

. Short circuit to positive pole of power supply

Short circuit to ground

Open circuit (for the case where there are pull-up resistors or pull-down resistors during input stage, ECU will recognize failure of open circuit at input port as that of short circuit to positive pole of power supply or that of short circuit to ground) Signals can not be used

4. Failure Frequency Counter

. For every identified failure, a separate frequency counter numerical value (Hz) will be set.

. This numerical value (Hz) for frequency counter determines the time this failure

information record will be stored in memory after the identified failure disappears (after troubleshooting).

- . When a failure is identified for the first time, Hz will be set as its initial value 40. If failure status does not change, then this numerical value will maintain all along.
- Once it is identified that this failure has disappeared and the state has held for a certain time, whenever the engine starts with success (its engine speed has exceeded the value at end of starting) once, Hz will decrease by 1. At this point, ECU will believe that this failure has disappeared, but the failure information record still exists.
- If a failure (for example, as a result of poor contact) frequently appears and disappears, then Hz will increase by 1, but will not exceed its given upper limit value 100.
- . If value of Hz has been decreased to zero, the failure information records in this failure memory will be completely cleared.

5. Limp Home

For some identified significant failures, when duration exceeds the given stabilization time, ECU will take appropriate software countermeasures, for example, closing some control functions such as closed loop control of oxygen sensor etc. and setting substituted values for some data that are considered to be suspect and so forth. At this point, though the working condition of the engine is comparatively poor, the auto can still run. The purpose to do this is to enable the auto limply run home or to a service station for overhaul, so as to avoid the embarrassment that the auto breaks down on highway or afield. Once it is identified that the failure has disappeared and Hz has fell to below 40, use of normal data will be resumed again.

6. Failure Alert

In the electric control system, when failure take places in any of such important parts as ECU, absolute pressure sensor in intake manifold, throttle position sensor, coolant temperature sensor, knock sensor, oxygen sensor, phase sensor, injector, two driver stages of step motor of idle speed actuator, canister control valve, or fan relay at corresponding failure location, ECU will give an alarm through lightening of failure indicator lamp until this failure location restores.

7. Readout of Failure

5

The failure information records can be called out of ECU through a trouble diagnosis tester. If the failure relates to the function of mixed air (fuel and air) proportional regulator, then the engine must at least run for 4 minutes before reading out failure information records; especially for failure in oxygen sensor, be sure not to detect data until the engine runs and warms up.

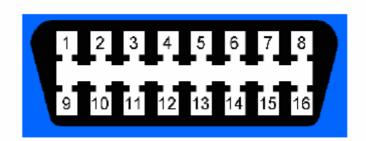


Figure 3-1 ISO 9141-2 Standard Diagnostic Connector

8. Clearing Failure Information Records

After the failure is removed, the failure information records in memory should be cleared. The diagnostic trouble code can be cleared through the following approaches:

. When the numerical value of frequency counter in ECU reaches zero, the failure information records in failure memory will be automatically cleared.

. Employing fault diagnostic tester to clear records of failure with the instruction of "reset memory for records of failure".

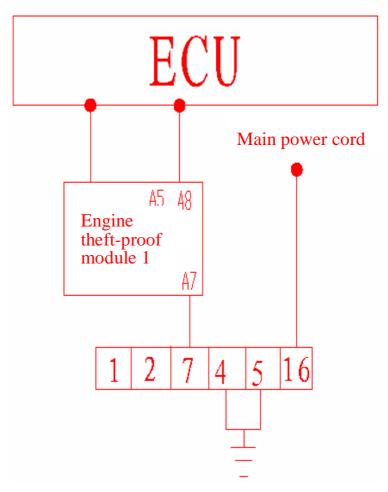
Pulling out connectors of ECU or disconnecting wires of battery to clear records of failure in external ram.

9. Failure Locating

After obtaining failure information records through above means, only rough location where the failure takes place is aware, but this does not mean that the failure has been located; because the cause that triggers a piece of failure information may be damage of electric element (such as sensor, actuator or ECU etc.), lead break, lead short-circuit to ground or anode of battery, even may be mechanical failure.

The failure is intrinsic and the result of its extrinsic representations is a variety of symptoms. After a symptom is found, first, check for failure information records with a trouble diagnosis tester or based on the flash code, after that, remove the correlated failure in accordance with the failure information, and then locate the failure based on symptom of the engine.

			Failure
No.	DTC	Explanation	class
1	P0016	Improper relative installation position between camshaft and crankshaft	class5
2	P0030	Failure in heating control circuit of upstream oxygen sensor	class31
3	P0031	Too low voltage in heating control circuit of upstream oxygen sensor	class31


10. Failure Code Table

4	P0032	Too high voltage in heating control circuit of upstream oxygen sensor	class31
5	P0105	Signal failure of intake air pressure sensor	class31
5	P0106	Improper signal from intake air pressure sensor	class31
7	P0107	Too low voltage in signal circuit of intake air pressure sensor	class31
3	P0108	Too high voltage in signal circuit of intake air pressure sensor	class31
Ð	P0112	Too low voltage in signal circuit of intake air temperature sensor	class5
10	P0113	Too high voltage in signal circuit of intake air temperature sensor	class5
11	P0117	Too low voltage in signal circuit of engine coolant temperature sensor	class31
12	P0118	Too high voltage in signal circuit of engine coolant temperature sensor	class31
13	P0121	Improper signal from electronic throttle position sensor 1	class34
14	P0122	Too low voltage in signal circuit of electronic throttle position sensor 1	class34
15	P0123	Too high voltage in signal circuit of electronic throttle position sensor 1	class34
16	P0130	Improper signal from upstream oxygen sensor	class31
17	P0131	Too low voltage in signal circuit of upstream oxygen sensor	class31
18	P0132	Too high voltage in signal circuit of upstream oxygen sensor	class31
19	P0134	Failure in signal circuit of upstream oxygen sensor	class31
20	P0201	Failure in 1# cylinder injector control circuit	class5
21	P0202	Failure in 2# cylinder injector control circuit	class5
22	P0203	Failure in 3# cylinder injector control circuit	class5
23	P0204	Failure in 4# cylinder injector control circuit	class5
24	P0219	Engine revolution exceeds the maximum revolution limit	class5
25	P0221	Improper signal from electronic throttle position sensor 2	class34
26	P0222	Too low voltage in signal circuit of electronic throttle position sensor 2	class34
27	P0223	Too high voltage in signal circuit of electronic throttle position sensor 2	class34
28	P0261	Too low voltage in 1# cylinder injector control circuit	class5
29	P0262	Too high voltage in 1# cylinder injector control circuit	class5
30	P0264	Too low voltage in 2# cylinder injector control circuit	class5
31	P0265	Too high voltage in 2# cylinder injector control circuit	class5
32	P0267	Too low voltage in 3# cylinder injector control circuit	class5
33	P0268	Too high voltage in 3# cylinder injector control circuit	class5
34	P0270	Too low voltage in 4# cylinder injector control circuit	class5
35	P0271	Too high voltage in 4# cylinder injector control circuit	class5
36	P0321	Improper signal of crankshaft top dead center	class33
37	P0322	Engine speed signal failure	class33
38	P0324	Failure in knock signal processing chip and its circuit	class5
39	P0327	Too low voltage in signal circuit of knock sensor	class31
40	P0328	Too high voltage in signal circuit of knock sensor	class31

41	P0340	Failure in signal circuit of phase sensor	class5
42	P0341	Improper signal from phase sensor	class5
43	P0342	Too low voltage in signal circuit of phase sensor	class5
44	P0343	Too high voltage in signal circuit of phase sensor	class5
45	P0444	Failure in control circuit of canister control valve	class31
46	P0458	Too low voltage in control circuit of canister control valve	class31
47	P0459	Too high voltage in control circuit of canister control valve	class31
48	P0480	Failure in relay control circuit of electronic cooling fan (low speed)	class5
49	P0481	Failure in relay control circuit of electronic cooling fan (high speed)	class5
50	P0501	Improper speed signal	class5
51	P0504	Improper signal of brake pedal A/B	class5
52	P0506	Engine speed under idle speed control is below the target idle speed	class5
53	P0507	Engine speed under idle speed control is above the target idle speed	class5
54	P0537	Too low voltage in signal circuit of evaporator temperature sensor	class5
55	P0538	Too high voltage in signal circuit of evaporator temperature sensor	class5
56	P0560	Improper system voltage signal	class33
57	P0562	Too low system voltage signal	class33
58	P0563	Too high system voltage signal	class33
59	P0571	Failure in signal circuit of brake pedal	class5
60	P0601	Failure in EEPROM of ECU	class33
61	P0602	Unprogrammed failure in ECU	class33
62	P0604	Failure in RAM of ECU	class34
63	P0605	Failure in ROM of ECU	class34
64	P0606	Safety monitoring function failure of electronic throttle	class34
65	P0627	Failure in control circuit of fuel pump relay	class33
66	P0628	Too low voltage in control circuit of fuel pump relay	class33
67	P0629	Too high voltage in control circuit of fuel pump relay	class33
68	P0645	Failure in control circuit of A/C compressor relay	class5
69	P0646	Too low voltage in control circuit of A/C compressor relay	class5
70	P0647	Too high voltage in control circuit of A/C compressor relay	class5
71	P0688	Improper output voltage of main relay	class33
72	P0689	Too low output voltage of main relay	class33
73	P0690	Too high output voltage of main relay	class33
74	P0691	Too low voltage in relay control circuit of electronic cooling fan (low speed)	class5
75	P0692	Too high voltage in relay control circuit of electronic cooling fan (low speed)	class5
76	P0693	Too low voltage in relay control circuit of electronic cooling fan (high speed)	class5

		Too high voltage in relay control circuit of electronic cooling fan (high	
77	P0694	speed)	class5
78	P0704	Improper clutch pedal signal	class5
79	P1336	Restrictive effect of safety monitoring torque of electronic throttle	class34
		The deviation between physical location and target location of electronic	
30	P1545	throttle overruns	class34
31	P1558	Too large opening resistance of electronic throttle	class34
32	P1559	Failure in self-study process of electronic throttle	class34
		System voltage fails to meet the conditions for self-study of electronic	
33	P1564	throttle	class34
		Failure in self-study of initialization of lower limit position of electronic	
34	P1565	throttle	class34
35	P1568	Too large restoration resistance of electronic throttle	class34
36	P1579	Fails to meet the conditions for self-study of electronic throttle	class34
37	P1604	Failure in self-study of gain adjustment of electronic throttle	class34
38	P1610	Unprogrammed error in Secret Key and Security Code	class39
39	P1611	Security Code acceptance error	class39
90	P1612	Challenge request failed	class36
91	P1613	Immo Code request failed	class36
92	P1614	Transponder check error	class36
93	P1677	Too high voltage in control circuit of detector lamp (SVS)	class5
94	P1678	Too low voltage in control circuit of detector lamp (SVS)	class5
95	P1679	Failure in control circuit of detector lamp (SVS)	class5
96	P2106	Failure in driver stage of electronic throttle	class34
		Too low voltage in signal circuit of electronic accelerator pedal position	
97	P2122	sensor 1	class34
		Too high voltage in signal circuit of electronic accelerator pedal position	
98	P2123	sensor 1	class34
		Too low voltage in signal circuit of electronic accelerator pedal position	
99	P2127	sensor 2	class34
100	D2129	Too high voltage in signal circuit of electronic accelerator pedal position	
100	P2128	sensor 2	class34
01	P2138	Improper signal from electronic accelerator pedal position sensor	class34
02	D2177	Self-study value of closed loop air fuel ratio control is above the upper limit	
102	P2177	(normal load zone) Self study value of closed loop air fuel ratio control is below the lower limit	class5
103	P2178	Self-study value of closed loop air fuel ratio control is below the lower limit (normal load zone)	class5
.05	1 21 / 0	Self-study value of closed loop air fuel ratio control is above the upper limit	
104	P2187	(idle speed zone)	class5
		Self-study value of closed loop air fuel ratio control is below the lower limit	
105	P2188	(idle speed zone)	class5

		Self-study value of closed loop air fuel ratio control is above the upper limit	
106	P2191	(heavy load zone)	class5
		Self-study value of closed loop air fuel ratio control is below the lower limit	
107	P2192	(heavy load zone)	class5

Electrical Schematic Diagram of Diagnostic Interface

11. The Steps for Implementation of Failure Diagnosis According to

Failure Information Records

11.1 Electronic Throttle Failure

Failure codes: P012, P0122, P0123, P022, P0222, P0223, P1336, P154, P1558, P1559, P1564,	
P1565, P1568, P1579, P1604	

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out the joint of throttle position sensor on	Yes	Next step
	harness; use a multimeter to check if the	ŊŢ	
	magnitude of voltage between its 3# and 5# pins	No	5
	is around 12V and if a 5V voltage is present		
	between 6# and 2# pins.		
3	Use a multimeter to check if the resistance	Yes	Next step
	values between 1#, 4# and 6# pins of the sensor	No	Replace the sensor
	are between $0.5k\Omega$ and $1.6k\Omega$.		
4	Meanwhile, use a multimeter to check if it is	Yes	Replace the sensor
	break or short circuit between 1#, 4# and 6#		
	pins of throttle position sensor and ECU38#,	No	Replace ECU
	54#, 36#; or, turn blade of the throttle to observe		
	if its resistance value jumps and if the resistance		
	values between 1#, 4# and 6# change		
	accordingly with rotation of throttle.		
5	Connect an adaptor between ECU and harness,	Yes	Repair or replace
	use a multimeter respectively check if it is break		wire harness
	or short circuit between 1#, 2#, 6# and 4# pins	N-	Denless ECU
	of the sensor and 10#, 32#, 36# and 54# pins of	No	Replace ECU
	ECU joint.		

Note: This auto adopts the electronic throttle body and has cancelled former step motor, and the functions that were accomplished by the stop motor on a common throttle body are now completely accomplished by the throttle driving motor. The electronic throttle can not be repaired and failure rate of the throttle body is very low, if damaged, replacing the assembly is the only choice to deal with the problem.

Special attention: The electronic throttle body can not be disassembled and repaired at service station; in addition, after replacing electronic throttle body, be sure to let it carry out self-study; otherwise, unsteady working at idle speed of engine may occur. See also the section about electronic throttle for detailed study scheme. Maintenance of the throttle body is analogous to that of the common valve body.

11.2 Knock Sensor failure

No.	Operating steps	Result	Follow up steps
1	Close the ignition switch, and the engine stops.		Next step
2	Pull out the joint of knock sensor on harness, use a multimeter to check if both resistance values	Yes	Next step
	between 1# and 2# pins and between 1# pin and shielded wire (sensor shield) pin of knock sensor are more than $1M\Omega$.	No	Replace with a new sensor
3	Knock on the edge of knock sensor with a small hammer and check with multimeter if there is communicating signal output between sensor pin 1# and 2#.	Yes No	Next step Replace the sensor
4	Turn on the ignition switch but do not start the engine.		Next step
5	Connect an adaptor between ECU and harness, use a multimeter respectively check if it is break or	Yes	Repair or replace wires
	short circuit between 19#, 20# pins of ECU and 1#, 2# pins of sensor joint.	No	Replace ECU

Failure codes: P0324, P0327, P0328

Note: Generally, knock sensor is not liable to damage. When disassembling and installing the knock sensor, be careful not to leave dirt on the contact surface of the sensor and the engine body and do not add any gasket. If the sensor is damaged, it will have an comparatively great effect on economical efficiency and emission of the engine. After the knock sensor is damaged, the electric control system of the engine will lock ignition advance angle of the engine at a fixed ignition angle, so, the acceleration performance of the engine will fall and economical efficiency and emission of the engine will also be greatly affected.

11.3 Air Pressure Sensor Failure

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out joint of intake air pressure sensor on	Yes	4
	harness; use a multimeter to check if a 5V		
	voltage is present between 2# and 3# pins of the	No	Next step
	joint.		
3	Between ECU and harness, use a multimeter to	Yes	Repair or replace
	respectively check if it is break or short circuit		harness
	between 42# and 33# pins of ECU and 1#, 2#,	No	Next step
	3#, 4# pins of sensor joint.		
4	Replace the intake air temperature pressure		Next step
	sensor.		

Failure codes: P0102, P0103, P0112, P0113

Note: In case the sensor shorts to 5V or 12V power supply or ground, the engine may not start up or stop running.

11.4 Front Oxygen Sensor Failure

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull off the connector of harness of oxygen sensor. Check the voltage between pin 1# (+) and 2# (-)	Yes	Next step
	with multimeter and detect if it is around 12V.	No	4
3	Use a multimeter to check if the resistance value	Yes	Replace ECU
	between 1# and 2# pins of the oxygen sensor is between 2Ω and 5Ω at 23° C.	No	Replace the sensor
4	Check if heating circuit of the oxygen sensor is	Yes	Next step
	normal.	No	Check the circuit
5	Check if it is short circuit or break circuit between the pin 2# of oxygen sensor and main relay 87#	Yes	Repair or replace harness
	pin and between the sensor connector 1# pin and ECU 1# pin with multimeter.	No	Next step
6	Connect the oxygen sensor connector of harness and use neutral. Start the engine and leave it at idle speed until its coolant temperature reaches to the normal value.		Next step
7	Pull off the oxygen sensor connector of harness.	Yes	Next step
	Check the battery output voltage between pin 3# (+) and pin 4# (-) of the sensor with multimeter and detect if it is from 0.1 to 0.9V (after the engine warms up).	No	Replace the senso
8	Connect the adaptor between ECU and harness. Check if it is short circuit or break circuit between	Yes	Repair or replace harness
	the pin 36# and pin 13# of ECU and the sensor connector pin 3# and pin 4# respectively with multimeter.	No	Replace ECU
9	Plug in the oxygen sensor connector of harness and use neutral. Start the engine and leave it at idle speed until its coolant temperature reaches to the normal value.		Next step
10	Connect special diagnostic tester for Chery to read	Yes	Next step
	part of data stream of the engine, and then observe if part of data stream of the sensor fluctuates between 100mv and 900mv.	No	Replace the senso
11	Start the engine and let it run at idle speed until coolant temperature reaches normal value.		Next step

Failure codes: P0130, P0131, P0132, P0134, P0135

12	Connect special diagnostic tester for Chery to read	Yes	Check other part
	part of data stream of the engine, and then		
	carefully observe part of data stream of the sensor;	No	Replace the sensor
	apply the accelerator pedal to bottom and then		
	rapidly release it, observe if the output voltage of		
	the oxygen sensor can reach below 100mv.		

Note: when checking data flow of the oxygen sensor, be sure to note working position of the engine and let the working temperature of the engine reach the normal value, because the oxygen sensor only can start to work normally when the temperature is over 300° C.

11.5 Rear Oxygen Sensor Failure

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull off the oxygen sensor connector of harness. Check the voltage between pin 1# (+) and 2# (-)	Yes	Next step
	with multimeter and detect if it is around $12V$.	No	4
3	Use a multimeter to check if the resistance value	Yes	Replace ECU
	between 1# and 2# pins of the oxygen sensor is between 2Ω and 5Ω at 23° C.	No	Replace the sensor
4	Check if heating circuit of the oxygen sensor is	Yes	Next step
	normal.	No	Check the circuit
5	Check if it is short circuit or break circuit between pin 2# of oxygen sensor and main relay 87# pin	Yes	Repair or replace harness
	and between the sensor connector 1# pin and ECU 1# pin with multimeter.	No	Next step
6	Connect the oxygen sensor connector of harness and use neutral. Start the engine and leave it at idle speed until its coolant temperature reaches to the normal value.		Next step
7	Validate if the three-way catalytic converter works	Yes	Next step
	normally.	No	Replace the three-way catalytic converter
8	Pull out the oxygen sensor joint on harness.	Yes	Next step
	Rapidly apply the accelerator pedal for several times, and then use a multimeter to check if a output voltage between 0.1V and 0.9V is present between 3# (+) and 4# (-) pins of the sensor (after the engine warms up).	No	Replace the sensor
9	Connect the adaptor between ECU and harness. Check if it is short circuit or break circuit between	Yes	Repair or replace harness
	the pin 36# and pin 55# of ECU and the sensor connector 3# and 4# pins respectively with multimeter.	No	Replace ECU
10	Connect the oxygen sensor connector of harness and use neutral. Start the engine and leave it at idle speed until its coolant temperature reaches to the normal value.		Next step
11	Connect special diagnostic tester for Chery to read	Yes	Next step

Failure codes: P0136, 0137, 0138, 0036, 0037, 0038, 0054

	part of data stream of the engine, and then observe	No	Replace the sensor
	if part of data stream of the oxygen sensor is		or the three-way
	around 100 under standard idling operation.		catalytic converter
12	Start the engine and let it run at idle speed until		Next step
	coolant temperature reaches normal value.		
13	Connect special diagnostic tester for Chery to read	Yes	Check other part
	part of data stream of the engine, and then		
	carefully observe part of data stream of the sensor;	No	Replace the sensor
	rapidly apply the accelerator pedal for several		
	times and observe if the output voltage of the		
	oxygen sensor fluctuates within a comparatively		
	large scope.		

Note: The characteristics and operating principle of rear oxygen sensor is basically the same as those of front oxygen sensor, in special conditions, they can be interchanged to use. The only difference between them is their different installation sites (working atmospheres), therefore, during maintenance and diagnostic processes of the vehicle, please pay attention to some inspection techniques for front and rear oxygen sensors.

11.6. Coolant Temperature Sensor Failure

Failure codes: P0112, P0113

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out joint of coolant temperature sensor on	Yes	Next step
	harness; use a multimeter to check if the magnitude of voltage between 1# (+) and 2# (-) pins of this joint is around 5V.	No	4
3	Use a multimeter to check if the resistance value	Yes	Replace ECU
	between 1# and 2# pins of the sensor is in proportion to its temperature (refer to relevant part in this service manual).	No	Replace the sensor
4	Use a multimeter to check if it is break or short circuit between 17# and 29# pins of ECU and 2#	Yes	Repair or replace harness
	and 1# pins of sensor joint.	No	Replace ECU
5	Start the engine, while engine coolant temperature	Yes	Next step
	rises, check if the voltages on two wires of the sensor falls as water temperature of the engine rises.	No	Replace the sensor
6	Start the engine, disconnect the connector of water	Yes	Check other part
	temperature sensor, and then observe if cooling fan of the engine starts up and runs at high speed.	No	Replace the ECU or the circuit

11.7 Failure in Driver Stage of Injector

Failure codes: P0201, P0202, P0203,	P0204, P0261, P0262	, P0264, P0265,	P0267, P0268,	P0270,
P0271				

No.	Operating steps	Result	Follow up steps
1	Close the ignition switch, and the engine stops.		Next step
2	Pull out each electromagnetic injector joint on harness in turn, and then lap the two pins of multimeter between 2# pin of the joint and the engine.		Next step
3	Put the ignition switch to "ON". Observe if, at the	Yes	Repeat 2
	instant when the ignition switch cuts in, the multimeter displays an around 12V voltage value	All yes	6
	of battery (mainly check if the injector has power supply, which is provided by main relay).	No	Next step
4	Use a multimeter to check in turn if it is break or short circuit between 87# pin of output terminal of	Yes	Repair or replace harness
	main relay of the engine and 1# pin of each electromagnetic injector joint.	No	Next step
5	Repair or replace fuel pump relay and main relay and their circuits.	Yes	Repair or replace harness
6	Connect the adaptor between ECU and harness; use a multimeter to check in turn if it is break or short circuit between 27#, 7#, 47# or 6# pins of ECU and 2# pin of each corresponding electromagnetic injector joint on harness.	No	Next step
7	Use a multimeter to check in turn if a resistance	Yes	Repeat 7
	between 12Ω and 16Ω is present at $20^{\circ}C$ between	All yes	Next step
	1# and 2# pins (and resistance value of injector) of the electromagnetic injectors.	No	Replace the electromagnetic injector
8	Re-plug all electromagnetic injector joints, engage	Yes	Repeat 8
	the gear to neutral position, start the engine, and then let it run at idle speed. Pull out all electromagnetic injector joints on harness in turn. Whenever a joint is pulled out, observe if engine vibration is aggravated accordingly (equivalent to spark out experiment).	No	Replace ECU

Note: The damage probability of injector is very low; its main failure is carbon deposit in injection nozzle, which may result in atomization of fuel injection, poor spray and unsteady idle speed of engine; therefore, when inspecting, above failure should be inspected as an emphasis.

11.8 Failure in Driver Stage of Canister Control Valve

No.	Operating steps	Result	Follow up steps
1	Start the engine and let it run at idle speed until		Next step
	engine coolant temperature reaches normal value.		
2	Pull out canister control valve joint on harness;	Yes	Next step
	use a multimeter to check if an around 8.6V battery voltage is present between two pins of this joint.	No	5 (check positive wire)
3	Re-plug the canister control valve joint on harness,	Yes	Next step
	increase engine revolution to 2000rpm, and then touch the valve body by hand to check if the canister control valve has slight vibration and impact (frequency control).	No	7 (check ground wire)
4	Use a multimeter to check if the resistance value	Yes	Replace ECU
	between A# and B# pins of the canister control valve is around 25Ω (20°C).	No	Replace the canister control valve
5	Check if it is short circuit or break circuit between the pin of main relay 87# and the pin of canister	Yes	Repair or replace the harness
	control valve 1# with multimeter.	No	Next step
6	Repair or replace the main relay and the circuit.		
7	Cut off the engine; connect the adaptor between ECU and harness, and use a multimeter to check if	Yes	Repair or replace harness
	it is break or short circuit between 46# pin of ECU and A# pin of the canister control valve.	No	Replace ECU
8	With ignition switch ON, disconnect canister control valve joint, and then use a multimeter to check the A# and B# pins at harness end of solenoid valve.		Next step
9	Use a multimeter to check if an around 12V	Yes	Next step
	battery voltage is present between B# pin and ground wire.	No	Check feed circuit
10	Use a multimeter to check if an around 3.6V	Yes	Check other part
	battery voltage is present between A# pin and		Check ECU circuit
	ground wire.	No	or replace the ECU

Failure codes: P0443, 0444, 0445

Note: The carbon canister solenoid valve is used for the emission control system, a system set up for environmental protection and air pollution prevention. When engine runs at idle speed or under heavy load operating mode, the solenoid valve will not participate in the work. A malfunction of this solenoid valve will result in unsteady operating mode of the engine. These details should be noted during maintenance process.

11.9 Failure in Driver Stage of Malfunction Indicator Lamp (MIL)

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON"		Next step
2	Disassemble the dashboard, and then use a	Yes	Check the circuit
	multimeter to check if it is break or short circuit	No	Next step
	between 29#, 30# pins at instrument end and 62#,		
	81# pins of ECU.		
3	Replace the instrument and then check if it is	Yes	Next step
	normal	No	Replace the
			instrument
4	Replace ECU, and then re-check if it works	Yes	Replace ECU
	normally.	No	Check other part
5	Check CAN circuit for the place where is	Yes	Replace the harness
	grounding or short.	No	Check other part

Failure codes: P1677, P1678, P1679

Note: The malfunction indicator lamp is controlled by ECU. When a failure occurs in the system, ECU will control the malfunction indicator lamp to light. There are two kinds of malfunction indicator lamps on this auto (engine failure indicator lamp and EPC), but the engine failure indicator lamp on the instrument may be shielded in the system, that is, when a failure occurs, EPC lamp will light, which should be noted during maintenance process.

11.10 Failure in Driver Stage of 1#, 2# Coils of Step Motor

No.	Operating steps	Result	Follow up steps
1	Turn on the ignition switch but do not start the		Next step
	engine.		
2	Pull out connector of the electronic throttle, and	Yes	Next step
	then check if the resistance value between 5# and	No	Replace the
	$3\#$ pins of the connector is around 6.1Ω .		electronic throttle
			body
3	Pull out the connector, and then use a multimeter	Yes	Next step
	to check if a 12V alternate voltage is present		
	between 5# and 3# connectors of the electronic	No	Check the circuit
	throttle.		
4	Use a multimeter to check if a 12V voltage is	Yes	Replace the idle
	present between the connector of the harness and		speed actuator
	ground when the key is ON.	No	Next step
5	Between ECU and harness, use a multimeter	Yes	Repair or replace
	respectively to check if it is break or short circuit		the harness
	between 67#, 65# pins of ECU and 5# pin of the	No	Replace ECU
	connector and between 66#, 64# pins of ECU and		
	3# pin of the connector.		

Failure codes: P1682, 1683

Note: Much about failure diagnosis for other parts has been involved above.

11.11 Crankshaft Position Sensor Failure

Failure code: P0016

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out camshaft position sensor joint on harness,	Yes	Next step
	and then use a multimeter to check if the voltage between 1# pin of this joint and ground wire is around 12V (battery voltage).	No	Check circuit and main power supply
3	Pull out camshaft position sensor joint on harness,	Yes	Next step
	and then use a multimeter to check if the voltage between 2# pin of this joint and ground wire is around 11.5V (power supply from ECU and the voltage is below the battery voltage).	No	Check circuit and ECU
4	Use a multimeter to check if it is break or short	Yes	Repair or replace
	circuit between 79# pin of ECU and 2# pin of		the harness
	sensor joint.	No	Next step
5	Pull out camshaft position sensor joint on harness,	Yes	Next step
	and then use a multimeter to check if it is conducting between 3# pin of this joint and ground wire.	No	Replace the sensor
6	Connect the sensor connector and start the engine.		Next step
7	Use a oscillometer to check if an around 6V	Yes	Check other part
	square wave signal output is present in 2# signal cable.	No	Replace the sensor

Note: The camshaft position sensor is an auxiliary sensor and has great effect on emission of the system. When failure occurs in this sensor, the vehicle will be difficult to start; though the vehicle will be basically normal after startup, driving restrictive practice will be found on the engine and the maximum revolution of engine can not exceed 4000rpm.

11.12 Craftshaft Position Sensor Failure

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out crankshaft position sensor joint on	Yes	Check the circuit
	harness, use a multimeter to check if it is short or break circuit between 1# pin of this joint and 34# pin of ECU.	No	Next step
3	Pull out crankshaft position sensor joint on harness, use a multimeter to check if it is short or	Yes	Next step
	break circuit between 3# pin of this joint and 15# pin of ECU.	No	Check circuit and ECU
4	Use a multimeter to check if it is break or short circuit between 79# pin of ECU and 2# pin of	Yes	Repair or replace the harness
	sensor joint.	No	Next step
5	Pull out crankshaft position sensor joint on	Yes	Next step
	harness, and then use a multimeter to check if the two signal cables on the sensor has a resistance value of around 1000Ω .	No	Replace the sensor
6	Connect the sensor connector and start the engine.		Next step
6	Use an oscillometer to check if signal waveform	Yes	Check other part
	output is present in signal cable.	No	Replace the sensor

Failure codes: P0321, P0322, P0219

Note: Crankshaft position sensor is the main sensor of electronic control unit of engine. If crankshaft position sensor failure occurs, the engine will be difficult to start; acceleration performance of the engine will be greatly restricted after startup; the maximum revolution of the engine can not exceed 3800rpm; meanwhile, emission of the engine will deteriorate.

11.12 Ignition Coil Failure

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out ignition coil joint on harness, and then use	Yes	Next step
	a multimeter to check if the voltage between 3# pin of this joint and ground wire is an around 12V	No	Check the circuit
	battery voltage.		
3	Pull out ignition coil joint on harness, and then use	Yes	Check circuit and
	a multimeter to check if it is short or break circuit		ECU
	between 1# pin of this joint and 5# pin of ECU.	No	Next step
4	Pull out ignition coil joint on harness, and then use	Yes	Check circuit and
	a multimeter to check if it is short or break circuit		ECU
	between 2# pin of this joint and 2# pin of ECU.	No	Next step
5	Check if the resistance of primary coil of the	Yes	Next step
	sensor is around 0.9Ω .	No	Replace the ignition
			coil
6	Check if the resistance of secondary coil of the	Yes	Next step
	sensor is around $14.5k\Omega$.	No	Replace the ignition
			coil
7	Use an oscillometer to check if secondary ignition	Yes	Check other part
	waveform of ignition cable of ignition system is	No	Replace the ignition
	normal.		coil

Note: The ignition coil is mainly used to provide ignition system of engine with ignition energy. The failure rate of the coil itself is very low, but its failure probability can not be completely excluded. When failure occurs in ignition coil, the ignition energy of engine will be deficient, which may further lead to such failures as unsteady idle speed of engine and emission deterioration.

11.13 Accelerator Pedal Position Sensor Failure

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out accelerator pedal position sensor joint on	Yes	Next step
	harness, and then use a multimeter to check if an	N	
	around 5V voltage signal is present between 3#,	No	Check the circuit
	6# pins of this joint and ground wire.		
3	Pull out accelerator pedal position sensor joint on	Yes	Check the circuit
	harness, and then use a multimeter to check if it is	N	N
	short or break circuit between 3#, 6# pins of this	No	Next step
	joint and 32#, 33# pins of ECU.		
4	Pull out accelerator pedal position sensor joint on	Yes	Check the circuit
	harness, and then use a multimeter to check if it is	No	Next step
	short or break circuit between 2#, 5# pins of this		
	joint and 36#, 35# pins of ECU.		
5	Pull out accelerator pedal position sensor joint on	Yes	Check the circuit
	harness, and then use a multimeter to check if it is	No	Next step
	short or break circuit between 4#, 1# pins of this		
	joint and 16#, 40# pins of ECU.		
6	Use a diagnostic tester to read signal output of	Yes	Next step
	accelerator pedal position sensor, and then check	No	Replace the sensor
	if signal 1 increases as opening of accelerator		assembly
	pedal increases.		
7	Use a diagnostic tester to read signal output of	Yes	Check other part
	accelerator pedal position sensor, and then check	No	Replace the sensor
	if signal 2 increases as opening of accelerator		assembly
	pedal increases.		

Failure codes: P2106, P2122, P2123, P2127, P2128, P2138

Note: This pedal is an integrated circuit device, which can not be processed through repair; therefore, during maintenance process, the service station can maintain it by means of part replacement and can not disassemble the sensor.

11.14 Double Brake Switch

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON".		Next step
2	Pull out brake switch joint on harness, and then use a multimeter to check if it is short or break	Yes	Next step
	circuit between 1#, 2# pins of this joint and 21#, 58# pins of ECU.	No	Check the circuit
3	Close the ignition switch, and then check if an	Yes	Next step
	around 12V battery voltage is present on 3# pin of the switch joint.	No	Check the circuit
4	Open the ignition switch, and then check if an	Yes	Next step
	around 12V battery voltage is present on 4# pin of the switch joint.	No	Check the circuit
5	Release brake pedal, disconnect sensor connector,	Yes	Next step
	and then check if 1# and 3# pins cut off.	No	Replace the brake switch
6	Release brake pedal, disconnect sensor connector,	Yes	Next step
	and then check if 2# and 3# pins conducts.	No	Replace the brake switch
7	Apply brake pedal, disconnect sensor connector,	Yes	Next step
	and then check if 1# and 3# pins conducts.	No	Replace the brake switch
8	Apply brake pedal, disconnect sensor connector,	Yes	Check other part
	and then check if 2# and 4# pins cut off.	No	Replace the brake switch

Failure codes: P0571, P0504

11.15 Theft-proof Control System Failure

No.	Operating steps	Result	Follow up steps
1	Insert the ignition key into the ignition lock.		Next step
2	Put the ignition switch to ON position, and then	Yes	Check other part
	observe if engine failure indicator lamp or EPC	NT.	
	lamp works normally (quick flash of failure	No	Next step
	indicator lamp or EPC lamp indicates a abnormal		
	condition).		
3	Connect a diagnostic tester to the system, and then	Yes	Remove the failure
	enter corresponding diagnostic program unit to		and clear the DTC
	check if DTC exists in the system.	No	Next step
4	Pull out theft-proof module joint on harness, and	Yes	Next step
	then use a multimeter to check if an around 12V		
	operating voltage is present on A1#, A4# pins of	No	Check the circuit
	the joint when ignition switch is under ON state.		
5	Pull out theft-proof module joint on harness, and	Yes	Check the circuit
	then use a multimeter to check if such electric and	No	Next step
	circuit failures as short circuit and break circuit		
	exist in the circuit between A5#, A8# pins of this		
	joint and 31# and 71# pins of ECU.		
6	Pull out theft-proof module joint on harness, and	Yes	Check the circuit
	then use a multimeter to check if poor contact	No	Next step
	exists between A2# pin of this joint and ground		
	wire of the vehicle.		
7	Pull out theft-proof module joint on harness, and	Yes	Check the circuit
	then use Ohm Shift of the multimeter to check if	No	Replace the
	the circuit between B1#, B2#, B3# pins of this		theft-proof module
	joint and the coil exists.		

12. Steps for Implementation of Failure Diagnosis by Engine

Symptom

12.1 Perform Preliminary Inspection First before Following the Steps for Implementation of Failure Diagnosis by Engine Symptom.

(1) Make sure that ECU and failure indicator lamp (or EPC lamp) have no off-normal phenomenon (excluding the models that have no failure indicator lamp).

(2) Use a failure diagnostic tester to check and make sure no failure information record exists.

(3) Employ failure diagnostic tester to check that hot idle data from electronic control system fall within normal scope.

Hot fulle speed parameter table.	
Name	Parameter
Air intake temperature	20-70℃
Battery voltage	12-14V (affected by engine revolution)
Temperature of engine coolant	80-90℃ (normal operating temperature)
Position of accelerator pedal	0%~99.00%
Air-fuel ratio control integrator	5%-5%
Ignition advance angle	$5-10^{\circ}$ (may change with fluctuation of
	engine revolution)
Outer corner of throttle	0%~99.61%
Fuel injection time	2-7ms (has a strong relation with engine
	revolution)
Engine revolution n	Expected idle speed \pm 50rpm
Duty cycle of canister control valve	0%~99.9%
Self-adapting value of air-fuel ratio	0.95-1.05
control	
Self-adapting value of air-fuel ratio	120-140
control	
Intake manifold absolute pressure	350-650hPa
Voltage of oxygen sensor	Quickly fluctuates at 0.1-0.9V
Air intake pressure	
Intake manifold absolute pressure Voltage of oxygen sensor	

Hot idle speed parameter table:

(4) Validate that the failure effect the owner complained exists and then locate the exact position of the symptom. Please note that the information provided by the customer is very important, especially the failure symptoms, occurrence time, position and if any other failure symptoms occurred before; these information can help technical personnel rapidly and effectively judge the failure, thus increasing maintenance speed and improving maintenance quality.

Then check the appearance:

. Check that grounding of wire harness is clean and firm.

- . Check that vacuum pipeline is unbroken, twisted and in right connection.
- . Check that there is no obstruction in pipe.
- . Check that air intake pipe is not squashed or damaged.
- . Check that the seal between throttle body and intake manifold is perfect.
- . Check that ignition cable of ignition system is unbroken, no ageing and in right wiring.
- . Check that wires are in right connection, no loosing or poor connection for connectors.

No.	Operating steps	Result	Follow up steps
1	Use a multimeter to check if a voltage around	Yes	Next step
	10-12.5V is present between two battery	No	Repair or
	terminals.		replace the
			battery
2	Put the ignition switch to "ON". Use a	Yes	Next step
	multimeter to check if a battery voltage around	No	Repair wiring
	10-12.5V is present on the terminal on the	110	terminal or
	ignition switch that connects with anode of		replace cable
	battery.		
3	Maintain ignition switch at START position,	Yes	Next step
	and then use a multimeter to check if a voltage	N	
	above 8V is present on the terminal on the	No	Replace the
	ignition switch that connects with pull in		ignition switch
	winding of starting motor.		
4	Put the ignition switch at start position, check	Yes	Next step
	the anode terminal of starting motor by	No	Repair wiring
	multimeter and observe the voltage if it is above		terminal
	8V.		Or replace
			cable
5	Check if it is short circuit or break circuit in the	Yes	Repair or
	starting motor.		replace the
			starting motor
		No	Next step
6	Check if there is jammed by poor lubricating.	Yes	Troubleshootin
			g
		No	Next step
7	If the failure is happened in winter time, check if	Yes	Replace with
	it is because of the wrong engine lubricant and		appropriate oil
	gearbox oil causes the big resistance of the	No	Check if other
	starting motor.		systems are
			normal

12.2 The Engine Does not Rotate or Rotates Slowly when Starting

Note: When this problem occurs, mainly inspect voltage, starter and ground system. In modern sedan, lubricant has little effect on startup of the vehicle, so, basically, it needs not to allow for lubricant problem, but the problem if the engine has too large self resistance should be taken into consideration.

12.3 When Starting, Engine Can be Dragged to Rotate but Can not Start with Success.

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON". Use a failure	Yes	Remove the
	diagnostic tester to check if any failure		failure displayed
	information record exists.	No	Next step
2	Pull out cylinder distribution wire, connect	Yes	8
	spark plug with the distance between electrode of spark plug and engine body as 8-10mm, use the starting motor to drag the engine to rotate, and then check if blue-white high-voltage spark occurs (disconnect all injection nozzles on the engine).	No	Next step
3	Check if resistance value of ignition cable is	Yes	Next step
	normal (can not exceed $16k\Omega$).	No	Repair, replace the ignition cable.
4	Check ignition coil and ignition cable for burn	Yes	Replace
	through, damage and crack.	No	Next step
5	Check if ignition cable is normal.	Yes	Replace
		No	Next step
6	Check if the ignition coil is working normally.	Yes	Next step
		No	Replace
7	Check if connectors of ignition coil and	Yes	Next step
	ignition cable are connected properly.	No	Connect the connectors properly
8	Put the ignition switch to "ON". Check if fuel	Yes	Next step
	pump relay and fuel pump can keep working for a period of time.	No	Overhaul the fuel pump circuit
9	Connect fuel manometer valve. Short 30# and 87# pins of fuel pump relay to make the fuel	Yes	Next step
	pump run, and then check if fuel pressure is around 400kPa.	No	13
10	Pull off the fuel distributing pipe and the fuel	Yes	12
	injector; pull off the joints of fuel injector on the harness one by one. And supply the voltage of 12 V from battery to fuel injector directly and look if the fuel injector can inject normally.	No	Next step
11	Clean out the fuel injector and observe if it can	Yes	Next step

	work correctly.	No	Replace the fuel injector
12	Check if fuel is bad or moisture.	Yes	Replace fuel
		No	18
13	Check if the fuel pressure value is below 400	Yes	Next step
	kPa.	No	17
14	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for a period of time, and then check if fuel pressure can be built up.	No	16
15	Open the valve of fuel gauge and clamp the oil	Yes	Check other part
	return pipe by oil return baffle so that the oil can	No	Repair or replace
	not return. Check if the oil pressure occurs immediately.		the fuel pump
16	Check if there is leakage or jam in oil intake	Yes	Repair or replace
	pipe.		oil intake pipe
		No	Replace oil pump
17	Check if the oil return pipe is bended or jammed.	Yes	Repair or replace oil return pipe
		No	Replace fuel pressure regulator
18	Check if it is break or short circuit between 1#, 2# pins of crankshaft position sensor and 34#,	Yes	Repair or replace
	15# pins of ECU.	No	Next step
19	Check if the part of air intake system is leaking.	Yes	Repair
		No	Next step
20	Check if air flow meter works normally.	Yes	Repair or replace
		No	Next step
21	Check if the coolant temperature sensor is	Yes	Next step
	working correctly.	No	Repair or replace
22	Check if the reason for the failure on starting is	Yes	Remove the
	about mechanism, such as much cylinder	No	mechanical failure
	clearance, cylinder leaking, and so on.	No	Replace ECU

Note: When checking this problem, if all parts in electronic fuel injection system are normal, consider if mechanical part of the engine works normally, or if cylinder pressure is normal and if air leakage exists and so forth.

12.4 Warm Starting Difficulty

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON". Use a special	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Connect fuel manometer valve. Short 30# and 87#	Yes	Next step
	pins of fuel pump relay to make the fuel pump run, and then check if fuel pressure is around	No	9
	400kPa.		
3	Disconnect the connecting oil pipe and turn off the	Yes	Next step
	ignition switch. Observe the voltage of fuel system	No	Repair the fuel
	and look if it is around 300 kPa after an hour.		system to avoid leakage
4	Put the connecting oil pipe through, use fuel tube	Yes	Replace fuel
	clamp to intercept the oil return pipe, meanwhile,		pressure regulator
	close the fuel manometer valve. Turn off the	No	Next step
	ignition switch, after one hour, observe if pressure		
	of fuel system still can maintain at around 400kPa.		
5	Check if there is fuel leakage of fuel injector and	Yes	Replace the injector
	oil pipe.		and fuel pipe
		No	Next step
6	Pull out water temperature sensor joint and start	Yes	Check coolant
	the engine. Observe if the engine can start with		temperature and
	success.		circuit
		No	Next step
7	Connect an adaptor between ECU and harness,	Yes	Next step
	check if a voltage around 5V is present on 39#,	No	Repair or replace
	17# pins, meanwhile, check if the resistance value		the harness
	of water temperature sensor is within normal		
	scope.		
8	Replace ECU and perform warm start again;	Yes	End
	observe if the engine can be started successfully.	No	Replace ECU
9	Check if there is jam or bending of fuel pipe and if	Yes	Next step
	the pressure regulator valve of oil pump is working correctly.	No	Repair or replace
10	Check if there is battery voltage between the plugs	Yes	Next step
	of oil pump with multimeter.	No	Repair or replace
			fuel pump relay and
			wires
11	Try to replace the fuel pump and see if the system	Yes	Next step
	can return to normal.	No	Replace fuel pump

12	Check if the fuel pump is stopped up.	Yes	Replace fuel pump
		No	Replace ECU

Note: Warm starting difficulty is in connection with many systems, such as battery, throttle body and water temperature sensor etc. as well as mechanical part of the engine, such as valve sealing. Thermal expansion of engine under warm state may lead to rise of engine resistance.

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON". Use a special	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Check the air cleaner and look if it is open.	Yes	Next step
		No	Replace
3	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is	No	Eliminate the
	around 300Kg/h (remember to check if cylinder		failure of air intake
	pressure is normal).		system leaking
4	Step on the throttle slightly and observe if it is	Yes	Replace the
	easy to be started easily.		electronic throttle
			body
5	Connect fuel manometer valve. Short 30#, 87#	Yes	Next step
	pins of fuel pump relay to make the fuel pump	No	9
	run, and then check if fuel pressure is around		
	400kPa.		
б	Use a special joint to directly supply a 12V	Yes	8
	voltage and intermittent ground wire from	No	Next step
	battery to injector and check if the injector		
	works normally (work intermittently).		
7	Clean out the fuel injector and look if it can	Yes	Next step
	work correctly.	No	Replace fuel
			injector
8	Replace fuel 8, and check if the fuel is	Yes	Replace fuel
	deteriorated or moisture.	No	14
9	Check if the fuel pressure value is below 300	Yes	Next step
	kPa.	No	13
10	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for 3s,	No	12
	and then check if fuel pressure can be built up.		
11	Open the valve of fuel gauge and clamp the oil	Yes	Replace fuel
	return pipe by oil return baffle so that the oil can		pressure regulator
	not return. Check if the oil pressure occurs	No	Repair and replace
	immediately.		fuel injector and oil
			pipe
12	Check if there is leaking or jam in oil intake	Yes	Repair or replace
	pipe.		oil intake pipe
		No	Replace oil pump
13	Check if the oil return pipe is bended or	Yes	Repair or replace
	jammed.		oil return pipe

12.5 Engine Speed is Normal, but it is Difficult to Start at any Time

		No	Replace fuel
14	When engine coolant is at low temperature, pull	Yes	pressure regulator Next step
	out electronic throttle body on harness and observe if engine revolution will rise.	No	Check electronic throttle body for
			damage
15	Put the ignition switch to "ON". Check if	Yes	Next step
	voltage on the following pins of ECU is normal:	No	Check wires and
	if it is a battery voltage around 12V on 12#, 14#,		plugs
	15# pins; if the voltage between 51#, 53#, 3#,		
	61#, 80# pins and the wire is zero.		
16	Check if ignition advance angle is normal.	Yes	Next step
		No	Check other systems
17	Check if cylinder compression pressure of	Yes	Next step
17	engine is normal, if low, add a little engine oil	No	Troubleshooting
	into each cylinder and re-measure if the cylinder	110	Troubleshooting
	pressure is normal.		
18	If air cleaner or airflow sensor is choked.	Yes	Repair or replace
		No	Next step
19	Check if the coolant temperature sensor is	Yes	Replace ECU
	working correctly.	No	Repair or replace

Note: Note if theft-proof system has started up. After theft-proof system has started up, when starting the engine, the staring motor can run normally, but the engine can not start; therefore, please note if this system can work normally.

12.6 Cold Starting Difficulty

No.	Operating steps	Result	Follow up steps
1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Use a multimeter to check if the coolant	Yes	Next step
	temperature sensor is normal. (A 2.8K Ω electric resistance can also be connected in series between 39# and 17# pins of ECU to start the engine in stead of the coolant temperature sensor. If the engine can start, it indicates off normal of coolant temperature sensor.)	No	Replace the sensor
3	Put the ignition switch to "ON". Check if voltage	Yes	Next step
-	on the following pins of ECU is normal: if it is a battery voltage around 12V on 12#, 14#, 15# pins; if the voltage between 51#, 53#, 3#, 61#, 80# pins and the wire is zero.	No	Check wires and plugs
4	Check the air cleaner and look if it is open.	Yes	Next step
		No	Replace
5	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is around 300Kg/h (remember to check if cylinder pressure is normal).	No	Eliminate the leakage failure of air intake system
6	Step on the throttle slightly and observe if it is easy to be started easily.	Yes	Check the electronic throttle
		No	Next step
7	When engine coolant is at low temperature, pull	Yes	Next step
	out electronic throttle body joint on harness and observe if engine revolution will rise.	No	Check the electric throttle body
8	Connect fuel manometer valve. Let 86# pin of fuel	Yes	Next step
	pump relay directly ground. Turn on ignition switch to make fuel pump relay and fuel pump work, and then check if fuel pressure is at around 400kPa.	No	12
9	Use a special joint to directly provide a 12V	Yes	11
	electricity and ground wire from battery to injector and check if the injector works normally.	No	Next step
10	Clean out the fuel injector and look if it can work	Yes	Next step
	correctly.	No	Replace fuel injector
11	Check if fuel is deteroprated or moisture.	Yes	Replace fuel

		N-	17
		No	17
12	Check if the fuel pressure value is below 300 kPa.	Yes	Next step
		No	16
13	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for a	No	15
	period of time, and then check if fuel pressure can		
	be built up.		
14	Open the valve of fuel gauge and clamp the oil	Yes	Check fuel pressure
	return pipe by oil return baffle so that the oil can		regulator and fuel
	not return. Check if the oil pressure occurs		pump
	immediately.	No	Repair and replace
			fuel injector and oil
			pipe
15	Check if the oil intake pipe is leaky or jammed.	Yes	Repair or replace
			oil intake pipe
		No	Replace oil pump
16	Check if the oil return pipe is bended or jammed.	Yes	Repair or replace
			oil return pipe
		No	Replace fuel
			pressure regulator
			or fuel pump
17	Check if the pressure of cylinder is normal.	Yes	Next step
		No	Troubleshooting
18	Check if the engine air intake system is leaky.	Yes	Repair
		No	Next step
19	If air cleaner or airflow sensor is choked.	Yes	Repair or replace
		No	Replace ECU
	•		

Note: The cold starting problem relates to more failure points, among which water temperature sensor is comparatively important, because it is the major parameter for determination of injection pulse-width when starting the engine. In case of a water temperature sensor failure or it generates a false signal, the system can not judge the temperature and starting difficulty may occur.

12.7 Unsteady Idle Speed at Any Time

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Check if electronic throttle system of engine	Yes	Repair or replace
	works normally.		the electronic
			throttle
		No	Next step
3	Turn on ignition switch, connect an adaptor	Yes	Check wires and
	between ECU and harness, and then check if the		plugs
	voltage between 17# and 42# pins of ECU,		
	between 39# and 17# pins of ECU (signal output	No	Next step
	terminal of intake air temperature sensor and		
	coolant temperature sensor) as well as 64#, 65#,		
	66#, 67# pins of ECU (for control of DC motor) is		
	normal.		
4	Let engine run at idle speed, spark out cylinder in	Yes	8
	turn, and observe if engine revolution will fall and	No	Next step
	fluctuate (cut fuel to injector).		
5	Check the fuel injectors of each cylinder and look	Yes	Next step
	if they are in right conditions.	No	Check fuel injector
			and wires
6	Check if resistance value of ignition cable of each	Yes	Next step
	cylinder is normal (can not exceed $16k\Omega$).	No	Replace
7	Check if ignition system works normally.	Yes	Maintain
		No	Next step
8	Check if the spark plug is in right conditions.	Yes	Next step
		No	Replace spark plug
9	Connect fuel manometer valve. Short 30# and 87#	Yes	Next step
	pins of fuel pump relay to make the fuel pump		
	run, and then check if fuel pressure is around	No	13
	400kPa.		
10	Use a special joint to directly provide a 12V	Yes	12
	power supply and intermittent ground wire signal	No	Next step
	from battery to injector and check if the injector		
	can work intermittently.		
11	Clean out the fuel injector and look if it can work	Yes	Next step
	correctly.	No	Replace fuel
			injector
12	Check if fuel is deteroprated or moisture.	Yes	Replace fuel
		No	18

13	Check if the fuel pressure value is below 300kPa.	Yes	Next step
15	check if the fuel pressure value is below 500kf a.	No	17
14	Close the fuel manometer valve. Re-engage the	Yes	Next step
14	ignition switch to let the fuel pump run for a	No	16
	period of time, and then check if fuel pressure can	INO	10
	be built up.		
15	Open the valve of fuel gauge and clamp the oil	Yes	Replace fuel
	return pipe by oil return baffle so that the oil can		pressure regulator
	not return. Check if the oil pressure occurs	No	Repair and replace
	immediately.		fuel injector and oil
			pipe
16	Check if there is leaking or jam in oil intake pipe.	Yes	Repair or replace
			oil return pipe
		No	Replace oil pump
17	Check if the oil return pipe is bended or jammed.	Yes	Repair or replace
			oil return pipe
		No	Replace fuel
			pressure regulator
18	Check the pressure of air intake pipe and if the	Yes	Use detergent to
	sense port of air intake temperature sensor is		wash
	jammed.	No	Next step
19	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches the active temperature of	No	Check the oxygen
	closed loop control, observe if the oxygen sensor		sensor and harness
	works normally (rapidly fluctuate between 0.1V		
	and 0.9V).		
	Check if the engine air intake system is leaky.	Yes	Remove leakage
20		No	Next step
21	Check if the pressure of cylinder is normal.	Yes	Next step
		No	Troubleshooting
22	Let engine run at idle speed, after coolant	Yes	Replace ECU
	temperature reaches normal value, then use a	No	Check other part
	special diagnostic tester to check if ignition		cheen only pure
	advance angle is within the standard scope.		

Note: Unsteady idle speed relates to many systems, such as air leak, carbon deposit and throttle body etc.; before replacing a part, make sure that air cleaner, spark plug and ignition system of engine are normal.

12.8 Unsteady	Idle Speed	during Wa	arming up	Process
12.0 Onbioudy	Tale Speed	aaring	arming up	11000000

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
1		ies	
	diagnostic tester to check if any failure	N	displayed
	information record exists.	No	Next step
2	Check the air cleaner and look if it is open.	Yes	Next step
		No	Replace
3	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is around	No	Eliminate the
	300Kg/h (remember to check if cylinder pressure		leakage failure of
	is normal).		air intake system
4	Turn on ignition switch, connect an adaptor	Yes	Next step
	between ECU and harness, and then check if the		
	voltage between 17# and 42# pins of ECU,	No	Overhaul
	between 39# and 17# pins of ECU (signal output		
	terminal of intake air temperature sensor and		
	coolant temperature sensor) as well as 64#, 65#,		
	66#, 67# pins of ECU (for control of DC motor) is		
	normal.		
5	Before finish of warming up of engine, pull out	Yes	Next step
	the joint on electronic throttle body and observe if	No	Check the electric
	engine revolution will change.		throttle body
6	Check if the coolant temperature sensor is	Yes	Next step
	working correctly.	No	Replace
7	Let engine run at idle speed, after coolant	Yes	Replace ECU
	temperature reaches normal value, then use a	No	Check the ignition
	special short diagnostic tester to check if ignition	1,0	timing mechanism
	advance angle is normal.		

Note: Unsteady idle speed occurs seldom during warming up process, its troubleshooting is similar to that for previous case, but validate if water temperature sensor works normally in advance.

12.9. Unsteady Idle Speed after Warming up

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Turn on ignition switch, connect an adaptor	Yes	Next step
	between ECU and harness, and then check if the voltage between 17# and 42# pins of ECU, between 39# and 17# pins of ECU (signal output terminal of intake air temperature sensor and coolant temperature sensor) as well as 64#, 65#, 66#, 67# pins of ECU (for control of DC motor) is normal.	No	Repair or replace the harness
3	Turn off the engine. Check the air cleaner and	Yes	Next step
	look if it is open.	No	Replace
4	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is	No	Eliminate the leakage
	around 300Kg/h (remember to check if cylinder pressure is normal).		failure of air intake system
5	Connect fuel manometer valve. Short 30# and	Yes	Next step
	87# pins of fuel pump relay to make the fuel pump run, and then check if fuel pressure is around 400kPa.	No	9
б	Use a special joint to directly provide a 12V	Yes	8
	power supply and intermittent ground wire from battery to injector and check if the injector can work intermittently.	No	Next step
7	Clean out the fuel injector and look if it can	Yes	Replace
	work correctly.	No	Replace fuel injector
8	Check if fuel is deteroprated or moisture.	Yes	Replace fuel
		No	14
9	Check if the fuel pressure value is below	Yes	Next step
	300kPa.	No	13
10	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for a period of time, and then check if fuel pressure can be built up.	No	12
11	Open the valve of fuel gauge and clamp the oil return pipe by oil return baffle so that the oil can	Yes	Replace fuel pressure regulator
	not return. Check if the oil pressure occurs immediately.	No	Repair and replace fuel injector and oil pipe

12	Check if there is leaking or jam in oil intake	Yes	Repair or replace oil
	pipe.		intake pipe
		No	Replace oil pump
13	Check if the oil return pipe is bended or jammed.	Yes	Repair or replace oil return pipe
		No	Replace fuel pressure regulator
14	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a	No	Check other systems
	diagnostic tester to check if ignition advance angle is normal.		
15	Pull off the coolant temperature sensor and	Yes	Replace the coolant
	observe if the engine is in right conditions.		temperature sensor
		No	Next step
16	Check if the compression pressure of cylinder is	Yes	Next step
	normal.	No	Troubleshooting
17	Check if resistance value of ignition cable of	Yes	Next step
	each cylinder is normal (can not exceed 16kÙ).	No	Replace
18	Check if ignition coil and ignition cable system	Yes	Replace
	works normally and if crack exists on ignition coil.	No	Next step
19	Check if the spark plug is in right conditions.	Yes	Replace ECU
		No	Replace spark plug

Note: After finish of warming up, engine will enter normal idle speed state, under which, unsteady revolution is in connection to many factors, such as spark plug, ignition cable, ignition coil, if air leak exists in the system, if carbon deposit exists in the system and if cylinder pressure is normal an so forth.

12.10 Unsteady Idle Speed or Extinguish with Load (A/C etc.)

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Turn on A/C switch, connect an adaptor	Yes	Next step
	between ECU and harness, and then measure 75# pin of ECU to see if input signal is present (high potential signal loaded by A/C switch through high and low voltage switches).	No	Check and repair air conditioning circuit
3	Check if the pressure of air conditioning system,	Yes	Next step
	the electromagnetic clutch of compressor and	No	Repair or replace
	the air conditioning pump are in right		
	conditions.		
4	Check the voltage on 64#, 65#, 66# and 67#	Yes	Next step
	pins of ECU (for control of DC motor) as well	No	Check controlling
	as corresponding pins on valve body is normal.		circuit
5	Remove electronic throttle body and check if	Yes	Check the electric
	throttle is locked or is dumb to run.		throttle body
		No	Next step
6	Start engine, turn on A/C, use a failure diagnosis	Yes	Replace ECU
	tester to read such signals as air intake flow and	No	Replace the
	engine revolution and check if engine		electronic throttle
	acceleration occurs.		body

Note: 75# pin is the up level request signal. When turning on A/C switch, an up level signal will be sent to ECU through this pin, and then ECU will further check other systems of A/C. If all systems are normal, ECU will control A/C relay to ground and A/C system will start to work. 60# pin of ECU is medium voltage signal input; when high potential signal is loaded on this pin, cooling fan will start and run at high speed.

12.11 Periodic Unsteadiness (Have to Perform Self-study again after ECU

is Power off)

1	Put the ignition switch to "ON". Use a failure diagnostic tester to check if any failure	Yes	Remove the failure displayed
	information record exists.	No	Next step
2	Check the air cleaner and look if it is open.	Yes	Next step
		No	Replace
3	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is around 300Kg/h (remember to check if cylinder pressure is normal).	No	Check and repair air intake and leak
4	Let engine run at idle speed, spark out cylinder in	Yes	7
	turn, and observe if engine revolution will fall and fluctuate (it is prohibited to carry out spark out experiment by disconnecting ignition cable).	No	Next step
5	Turn on ignition switch, connect an adaptor between ECU and harness, and then check if the voltage between 17# and 42# pins of ECU, between 39# and 17# pins of ECU (signal output	Yes	Next step
	terminal of intake air temperature sensor and coolant temperature sensor) as well as 64#, 65#, 66#, 67# pins of ECU (for control of DC motor) is normal.	No	Repair or replace cable
6	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a diagnostic tester to check if ignition advance angle of the system is normal.	No	Check other part
7	Check air intake system for such failures that may	Yes	Sweep
	affect working of engine as blocking and air leak etc.	No	Next step
8	Check if fuel is deteroprated or moisture.	Yes	Replace fuel
		No	Next step
9	Use a special joint to directly provide a 12V	Yes	Next step
	power supply and intermittent ground wire from battery to injector and check if the injector can work intermittently.	No	Check and repair oil injector and related wires
10	Check if the resistance values of cylinders'	Yes	Next step
	ignition cable are normal.	No	Replace
11	Check if the ignition coil is damaged or cracked.	Yes	Replace
		No	Next step

12	Check if the spark plug is in right conditions.	Yes	Replace ECU
		No	Replace spark plug

Note: For periodic unsteadiness, mainly check air intake system for air leak or electronic throttle body for failure. Following are the steps for inspection of electronic throttle body: while turning on ignition key, throttle may jiggle; during self-checking procedure, throttle should act with actions of accelerator pedal.

12.12 Too High Idle Speed (Have to Perform Self-study again after ECU is

Power off)

		**	
1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Check if throttle valve plate is locked and if	Yes	Adjust or replace
	failure exists in electronic throttle body.	No	Next step
3	Check if the canister control valve, the fuel	Yes	Repair or replace
	pressure regulator, the positive crankcase	No	Next step
	ventilation vacuum pipe and the vacuum pipe of		
	brake system are mounted steadily or they are		
	damaged.		
4	Run the engine at idle speed and use neutral. Step	Yes	Next step
	on the accelerator and observe if the idle speed is	No	6
	too high.		
5	Clamp the vacuum pipe and observe if the idle	Yes	Repair or replace
	speed becomes normal.		the vacuum booster
		No	Next step
6	Replace PVC valve and clamp the positive	Yes	Replace PVC valve
	crankcase ventilation vacuum pipe. Observe if the	No	Next step
	idle speed becomes normal.		
7	Clamp the canister control valve pipe and observe	Yes	Replace the canister
	if the idle speed becomes normal.		control valve
		No	Next step
8	Check if electronic throttle body is dumb or	Yes	Repair or replace
	locked.	No	Next step
9	Check other parts of air intake pipe for leakage.	Yes	Repair or replace
		No	Next step
10	Check if the gasket of fuel injector is in good	Yes	Next step
	condition.	No	Replace the gasket
11	Check air intake system for air leak and air flow	Yes	Replace ECU
	meter for normal working.	No	Replace the sensor

Note: Check if the system goes through self-study, if not, the system will be under failure mode or an uncertain state all the time, which may result in too high idle speed of engine. The other cause is air leak in the system, if air leakage in the system is too large and exceeds regulation and control range of ECU, idle speed fluctuation may occur.

12.13. Engine Revolution Speed is too Low or Flameout

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Check the air cleaner and look if it is open.	Yes	Next step
		No	Replace
3	Run the engine at idle speed and check if the	Yes	Next step
	engine revolution speed is normal at idle speed.	No	Next step,
			overhaul with
			reference to idle
			speed failure
			entries
4	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is	No	Overhaul
	around 300Kg/h (remember to check if cylinder		
	pressure is normal).		
5	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a	No	Check other
	diagnostic tester to check if ignition advance		systems
	angle of the system is normal.		
6	Connect fuel manometer valve. Short 30# and	Yes	Next step
	87# pins of fuel pump relay to make the fuel	No	10
	pump run, and then check if fuel pressure is		
	around 400kPa.		
7	Use a special joint to directly provide a 12V	Yes	9
	power supply and intermittent ground wire from	No	Next step
	battery to injector and check if the injector can		
0	work intermittently.	N/	N
8	Clean out the fuel injector and look if it can	Yes	Next step
	work correctly.	No	Replace fuel
9	Check if fuel is bad or moisture.	Vaa	injector
9	Check if fuel is bad of moisture.	Yes No	Replace fuel
10	Check if the fuel massure value is below 250		-
10	Check if the fuel pressure value is below 350	Yes	Next step
	kPa.	No	14
11	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for a	No	13
	period of time, and then check if fuel pressure		
	can be built up.		
12	Open the valve of fuel gauge and clamp the oil	Yes	Replace fuel
	return pipe by oil return baffle so that the oil can		pressure regulator

	not return. Check if the oil pressure occurs immediately.	No	Repair and replace fuel injector and oil pipe
13	Check if there is leaking or jam in oil intake pipe.	Yes	Repair or replace oil intake pipe
		No	Replace oil pump
14	Check if the oil return pipe is bended or jammed.	Yes	Repair or replace oil return pipe
		No	Replacefuelpressure regulator
15	Put the ignition switch to "ON". Check if voltage on the following pins of ECU is normal:	Yes	Next step
	if it is a battery voltage around 12V on 12#, 14#, 15# pins; if the voltage between 51#, 53#, 3#, 61#, 80# pins and the wire is zero.	No	Repair or replace cable
16	Check if ignition coil, ignition cable and spark	Yes	Replace ECU
	plug are normal.	No	Adjust or replace the parts involved

Note: This phenomenon indicates a comparatively obvious failure and some minute details, such as if strainer of the system or exhaust pipe is blocked and so forth, should also be checked. For other causes, check spark plug and ignition cable etc.

12.14 Slow Response when Accelerating

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	Turn off the engine. Check the air cleaner and	Yes	Next step
	look if it is open.	No	Replace
3	Run the engine at idle speed and check if the	Yes	Next step
	engine revolution speed is normal at idle speed.	No	Repair in accordance
			with idle speed
			failure item
4	Run the engine at idle speed and check if the air	Yes	Next step
	intake pressure is from 35 to 65 kPa.	No	Overhaul
5	Put the ignition switch to "ON". Check if it is	Yes	Next step
	break or short circuit between 38#, 32#, 54#,	No	Repair or replace
	36# pins on ECU connector and 1#, 2#, 4#, 6#		Harness
	pins of throttle position sensor of electronic		
	throttle valve body.		
6	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a	No	Check other part
	diagnostic tester to check if ignition advance		
	angle is normal.		
7	Connect fuel manometer valve. Short 30# and	Yes	Next step
	87# pins of fuel pump relay to make the fuel	No	11
	pump run, and then check if fuel pressure is		
	around 4000kPa.		
8	Use a special joint to directly provide 12V	Yes	10
	power supply and intermittent 12V power	No	Next step
	supply from battery to injector and check if the		
0	injector can work intermittently.	N/	N
9	Clean out the fuel injector and look if it can	Yes	Next step
	work correctly.	No	Replace fuel injector
10	Check if fuel is bad or moisture.	Yes	Replace fuel
		No	16
11	Check if the fuel pressure value is below 300	Yes	Next step
	kPa.	No	15
12	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for a	No	14
	period of time, and then check if fuel pressure		
	1 · · · · · · · · · · · · · · · · · · ·	1	

13	Open the valve of fuel gauge and clamp the oil return pipe by oil return baffle so that the oil can	Yes	Replace the pressure regulator
	not return. Check if the oil pressure occurs	No	Repair and replace
	immediately.		fuel injector and oil
			pipe
14	Check if there is leaking or jam in oil intake	Yes	Repair or replace oil
	pipe.		intake pipe
		No	Replace oil pump
15	Check if the oil return pipe is bended or	Yes	Repair or replace oil
	jammed.		return pipe
		No	Replace the pressure
			regulator
16	Check if the exhaust system and three-way	Yes	Replace or clean
	catalytic converter are jammed.	No	Replace ECU

Note: For slow response when accelerating, mainly check air intake pressure and injection pulse-width etc.; choked exhaust pipe and smudgy air cleaner may be causes for this problem. In addition, spark plug and ignition cable problems may also be causes.

12.15 Poor Performance and Disability when Accelerating.

1	Check if failure occurs, such as clutch slipping,	Yes	Repair
1	low tire pressure, brake delay, wrong tire size		
	and incorrect four-wheel alignment.	No	Next step
2	Check if the electronic throttle can be full	Yes	Next step
	opening.	No	Repair or replace the
			throttle
3	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
4	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a	No	Check the parts
	diagnostic tester to check the ignition advance		involved
	angle.		
5	Put the ignition switch to "ON". Check if it is	Yes	Next step
	break or short circuit between 38#, 32#, 54#,		
	36# pins on ECU connector and 1#, 2#, 4#, 6#		
	pins of throttle position sensor of electronic		
	throttle valve body. check if the voltage between	No	Repair or replace
	17# and 42# pins of ECU, between 39# and 17#		Harness
	pins of ECU (signal output terminal of intake air		
	temperature sensor and coolant temperature		
	sensor) as well as 64#, 65#, 66#, 67# pins of		
	ECU (for control of DC motor) is normal.		
6	Run the engine at idle speed and check if the air	Yes	Next step
	intake pressure is from 35 to 65kPa.	No	Overhaul
7	Connect fuel manometer valve. Short 30# and	Yes	Next step
	87# pins of fuel pump relay to make the fuel	No	11
	pump run, and then check if fuel pressure is		
	around 400kPa.		1.0
8	Use a special joint to directly provide a 12V	Yes	10
	power supply and intermittent ground wire from	No	Next step
	battery to injector and check if the injector can		
	work intermittently.		
9	Clean out the fuel injector and look if it can	Yes	Next step
	work correctly.	No	Replace fuel injector
10	Check if fuel is deteroprated or moisture.	Yes	Replace fuel
		No	16
11	Check if the fuel pressure value is below 300	Yes	Next step
	kPa.	No	15

12	Close the fuel manometer valve. Re-engage the	Yes	Next step
	ignition switch to let the fuel pump run for a	No	14
	period of time, and then check if fuel pressure		
	can be built up.		
13	Open the valve of fuel gauge and clamp the oil	Yes	Replace the pressure
	return pipe by oil return baffle so that the oil can		regulator
	not return. Check if the oil pressure occurs	No	Repair and replace
	immediately.		fuel injector and oil
			pipe
14	Check if there is leaking or jam in oil intake	Yes	Repair or replace oil
	pipe.		intake pipe
		No	Replace oil pump
15	Check if the oil return pipe is bended or	Yes	Repair or replace oil
	jammed.		return pipe
		No	Replace the pressure
			regulator
16	Check if leak and blocking exist in air intake	Yes	Next step
	system and if air flow meter works normally.	No	Replace the sensor
17	Check if spark plug, ignition cable and ignition	Yes	Next step
	coil are normal.		
		No	Replace or adjust
18	Check if it results from air conditioning system.	Yes	Check A/C system
		No	Replace ECU

Note: Poor acceleration of system relates to many factors, such as problem in mechanical part of the engine itself, cylinder pressure and carbon deposit on valve etc. In addition, it is also in connection with other systems, such as power steering system and A/C system.

12.16 Unable to Reach the Maximum Revolution when Accelerating

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
1	diagnostic tester to check if any failure	105	displayed
	information record exists.	No	Next step
2	With engine off, check if air cleaner is smooth	Yes	Next step
	(can not simply rely on visualization, remove	No	Replace
	the air cleaner and then perform test drive again)	INO	Replace
	and if air intake system is chocked.		
3	Run the engine at idle speed and check if the	Yes	Next step
	engine revolution speed is normal at idle speed.	No	Repair in accordance
			with idle speed
			failure item
4	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is	No	Overhaul
	around 300Kg/h (remember to check if cylinder		
	pressure is normal).		
5	Put the ignition switch to "ON". Check if it is	Yes	Next step
	break or short circuit between 38#, 32#, 54#,	No	Repair or replace
	36# pins on ECU connector and 1#, 2#, 4#, 6#		Harness
	pins of throttle position sensor of electronic		
	throttle valve body.		
6	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a	No	Check other part
	diagnostic tester to check if ignition advance		
	angle is normal.		
7	Connect fuel manometer valve. Short 30# and	Yes	Next step
	87# pins of fuel pump relay to make the fuel	No	11
	pump run, and then check if fuel pressure is		
	around 400kPa.		
8	Check if working positions of camshaft position	Yes	Next step
	sensor and crankshaft position sensor are	No	Replace the parts
	normal.		involved
9	Clean out the fuel injector and look if it can	Yes	Next step
	work correctly.	No	Replace fuel injector
10	Check if fuel is deteroprated or moisture.	Yes	Replace fuel
		No	16
11	Check if the fuel pressure value is below 300	Yes	Next step
	kPa.	No	15
12	Check if the exhaust system and three-way	Yes	Replace or clean

ſ	catalytic converter are jammed.	No	Replace ECU

Note: In case the engine is unable to reach its maximum revolution when accelerating, mainly check if exhaust pipe is chocked and air cleaner is smudgy. In addition, for electric control system of A21, in case of a failure in crankshaft or camshaft position sensor, ECU will take restrictive driving measures to restrict engine revolution to exceed certain value, which should be noted during maintenance process.

12.17 When Releasing Accelerator Pedal after Acceleration, Unsteady Idle

Speed Occurs at Instant, even Extinguishes.

1	Put the ignition switch to "ON". Use a failure	Yes	Remove the failure
	diagnostic tester to check if any failure		displayed
	information record exists.	No	Next step
2	With engine off, check if air cleaner is smooth	Yes	Next step
	(can not simply rely on visualization, remove the air cleaner and then perform test drive again)	No	Replace
	and if air intake system is chocked.		
3	Run the engine at idle speed and check if the	Yes	Next step
	engine revolution speed is normal at idle speed.	No	Repair in accordance
			with idle speed failure item
4	After starting successfully, check if air intake	Yes	Next step
	consumption of the engine at idle speed is	No	Overhaul
	around 300Kg/h (remember to check if cylinder		
	pressure is normal).		
5	Put the ignition switch to "ON". Check if it is	Yes	Next step
	break or short circuit between 38#, 32#, 54#,	No	Repair or replace
	36# pins on ECU connector and 1#, 2#, 4#, 6#		Harness
	pins of throttle position sensor of electronic		
	throttle valve body.		
6	Let engine run at idle speed, after coolant	Yes	Next step
	temperature reaches normal value, then use a	No	Check other part
	diagnostic tester to check if ignition advance		
	angle is normal.		
7	Connect fuel manometer valve. Short 30# and	Yes	Next step
	87# pins of fuel pump relay to make the fuel	No	11
	pump run, and then check if fuel pressure is around 400kPa.		
8	Remove air intake hose, check if carbon deposit	Yes	Clear carbon deposit
0	or other soil (this may result in air intake system	No	Next step
	of engine being chocked when the valve plate	110	Пелтвер
	closes) exists.		
9	Clean out the fuel injector and look if it can	Yes	Next step
-	work correctly.	No	Replace fuel injector
10	Check if fuel is deteroprated or moisture.	Yes	Replace fuel
	_	No	16
11	Check if the fuel pressure value is below 400	Yes	Next step

	kPa.	No	15
12	Check if the exhaust system and three-way	Yes	Replace or clean
	catalytic converter are jammed.	No	Replace ECU

Note: For an electric control motor with the electronic throttle body, the main actuators of its air intake system are air flow meter and electronic throttle body. Air flow meter has very high operational reliability and very low failure rate, while, due to particularity of road status in China and affected by operating environment, choke is liable to occur between valve plate and valve body of the electronic throttle body, which may obstruct air from entering the engine and result in extinguish of engine.

12.18 A/C System Failure

1	Check if there is enough coolant, if the A/C belt,	Yes	Next step
	the A/C clutch and the pressure switch are in	No	Troubleshooting
	good condition.		C
2	Let engine run at idle speed and turn on A/C	Yes	Remove the failure
	switch. Enter A/C self diagnosis mode to check		displayed
	the A/C system for failure.	No	Next step
3	Turn on the A/C switch and connect an adaptor	Yes	Next step
	between ECU and harness. Measure 75# pin	No	Check the harness
	(A/C switch) of ECU and see if there are input		
	signals on it.		
4	If this vehicle adopts low level control, check if	Yes	Replace or repair the
	the air condition is working still even though it		harness
	is turned off.	No	Next step
5	Check if there is low level output at ECU pin	Yes	Repair the A/C
	No.69 (connect to the ground of pull in winding		replay and harness
	of A/C relay).	No	Replace ECU

Note: Different from the controlling means of other models, the A/C control system of A21 adopts the automatic A/C and uses double-pressure switch to control incorporation of the A/C system and the fan after A/C starts up.

13. Safety Precautions for System Maintenance

13.1 Safety Precautions for Diagnosis and Maintenance of Gasoline

Injection Electronic Control System

(1) Disassembly and assembly requirements for electronic control unit (ECU):

Controllers shall be removed before welding or paint-baking;

- . When disassembling and installing the controller, be sure to set ignition switch to CLOSE position and disconnect the battery with the system for fear to damage the engine control unit during disassembly and installation.
- Power supply wires shall not be removed from battery when engine is in operation or electric system is in use;
- . Do not use such heavy current equipment as charger etc. to start the engine by direct bridging;
- . Note that the ambient temperature for the controller should not exceed 80° C.

(2) Requirements for cleanness: the following rules should be observed for any operation on oil-supply system and oil-injection system:

. The parts removed should be place at a clean site and covered properly; do not use the cloth (cotton cloth and gauze) with falling off fibre;

(3) Connect and disconnect the connectors of all sorts of harnesses and the connectors of failure diagnosis testers only after the ignition switch is turned off.

. When measuring mains voltage or ground wire grounding of the electronic control system, be sure to check if the connection order and mode are correct;

Disconnect power cord or ground wire of battery from the system and disconnect harness connector of ECU; both operation modes above may cause loss of information about diagnosis and self-study stored in ECU (the retention time of information after the ECU installed is power off depends on the model).

(4) Attentions during maintenance of fuel feed system (fuel feed line, fuel pump and fuel injection system):

Disassembly or installation of oil pump on the tank full of oil or partly full of oil, please note:

- . Before operation, get material ready near the fuel tank opening for absorption of heavy discharging fuel, so that, the fuel discharged can be duly absorbed;
- Avoid skin from direct contact with gasoline as best as you can;
- . Before loosening a connection part, thoroughly clean this part and the area around the connecting pieces;
- Dishcloth shall be placed around the connecting part for avoide oil-spraying;

. If disassembled parts can not be repaired or for other processing immediately, store them properly.

. The spare parts can be taken out of their package only when they are to be installed; do not use the spare parts without package or with package heavily damaged;

. When installing an injector, be careful not to damage the O-gaskets at both ends of the injector; for installation convenience, apply a little lubricant on the O-gaskets.

After fuel and fuel feed systems are disassembled, avoid use of compressed air and move of the vehicle as best as you can.

(5) Safety precaution

In order to avoid maintenance technical personnel from being injured and fuel injection and ignition devices from being damaged, please note:

In case the engine is running or under starting speed, disconnection of ignition harness is forbidden. Checking the engine for poor working of single cylinder **by means** of spark test with ignition cable disconnected is not allowed;

if it is required to drag the engine by the starter without starting the engine itself, for example, in the case of inspection of cylinder pressure of engine etc., disconnect the harness connectors on engine revolution sensor and camshaft (phase) sensor and connect each sensor properly after the corresponding job has finished, and then use a special diagnostic tester for Chery to clear the failure codes in the system;

When the engine is running at high speed, touching wheel train of engine and revolving parts are forbidden;

When the engine reaches normal operating temperature, both water temperature and pressure of cooling system are very high; therefore, in case maintenance for the cooling system of engine is required, perform corresponding operations only after the engine has stopped and the cooling system has been fully cooled.

When maintaining fuel system of engine, if maintenance for engine compartment is involved, perform the operations only after temperature inside engine compartment of the vehicle has adequately fell;

Under a state that power on of the system is normal, do not touch cooling fan of the engine by hand at any time, because the cooling fan may start up abruptly.